Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Unravelling surface and interfacial structures of a metal–organic framework by transmission electron microscopy

Abstract

Metal–organic frameworks (MOFs) are crystalline porous materials with designable topology, porosity and functionality, having promising applications in gas storage and separation, ion conduction and catalysis1,2,3. It is challenging to observe MOFs with transmission electron microscopy (TEM) due to the extreme instability of MOFs upon electron beam irradiation4,5,6,7. Here, we use a direct-detection electron-counting camera to acquire TEM images of the MOF ZIF-8 with an ultralow dose of 4.1 electrons per square ångström to retain the structural integrity. The obtained image involves structural information transferred up to 2.1 Å, allowing the resolution of individual atomic columns of Zn and organic linkers in the framework. Furthermore, TEM reveals important local structural features of ZIF-8 crystals that cannot be identified by diffraction techniques, including armchair-type surface terminations and coherent interfaces between assembled crystals. These observations allow us to understand how ZIF-8 crystals self-assemble and the subsequent influence of interfacial cavities on mass transport of guest molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Atomic-resolution imaging of the ZIF-8 crystal lattice.
Figure 2: Surface termination of ZIF-8 crystals.
Figure 3: Coherent interface formed between two assembled ZIF-8 crystals.
Figure 4: Formation of interfacial cavities between assembled ZIF-8 crystals and their influences on gas diffusion.

Similar content being viewed by others

References

  1. Li, H., Eddaoudi, M., O’Keeffe, M. & Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature 402, 276–279 (1999).

    Article  CAS  Google Scholar 

  2. Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 974–986 (2013).

    Article  CAS  Google Scholar 

  3. Park, K. S. et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl Acad. Sci. USA 103, 10186–10191 (2006).

    Article  CAS  Google Scholar 

  4. Lebedev, O. I., Millange, F., Serre, C., Van Tendeloo, G. & Ferey, G. First direct imaging of giant pores of the metal–organic framework MIL-101. Chem. Mater. 17, 6525–6527 (2005).

    Article  CAS  Google Scholar 

  5. Zhu, L. K., Zhang, D. L., Xue, M., Li, H. & Qiu, S. L. Direct observations of the MOF (UiO-66) structure by transmission electron microscopy. Crystengcomm 15, 9356–9359 (2013).

    Article  CAS  Google Scholar 

  6. Wiktor, C., Turner, S., Zacher, D., Fischer, R. A. & Van Tendeloo, G. Imaging of intact MOF-5 nanocrystals by advanced TEM at liquid nitrogen temperature. Micropor. Mesopor. Mat. 162, 131–135 (2012).

    Article  CAS  Google Scholar 

  7. Cravillon, J. et al. Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chem. Mater. 21, 1410–1412 (2009).

    Article  CAS  Google Scholar 

  8. Feyand, M. et al. Automated diffraction tomography for the structure elucidation of twinned, sub-micrometer crystals of a highly porous, catalytically active bismuth metal–organic framework. Angew. Chem. Int. Ed. 51, 10373–10376 (2012).

    Article  CAS  Google Scholar 

  9. Yakovenko, A. A., Reibenspies, J. H., Bhuvanesh, N. & Zhou, H. C. Generation and applications of structure envelopes for porous metal–organic frameworks. J. Appl. Crystallogr. 46, 346–353 (2013).

    Article  CAS  Google Scholar 

  10. Adams, C. J., Haddow, M. F., Lusi, M. & Orpen, A. G. Crystal engineering of lattice metrics of perhalometallate salts and MOFs. Proc. Natl Acad. Sci. USA 107, 16033–16038 (2010).

    Article  CAS  Google Scholar 

  11. Wu, H. et al. Unusual and highly tunable missing-linker defects in zirconium metal–organic framework UiO-66 and their important effects on gas adsorption. J. Am. Chem. Soc. 135, 10525–10532 (2013).

    Article  CAS  Google Scholar 

  12. Fang, Z. L., Bueken, B., De Vos, D. E. & Fischer, R. A. Defect-engineered metal–organic frameworks. Angew. Chem. Int. Ed. 54, 7234–7254 (2015).

    Article  CAS  Google Scholar 

  13. Makiura, R. et al. Surface nano-architecture of a metal–organic framework. Nat. Mater. 9, 565–571 (2010).

    Article  CAS  Google Scholar 

  14. Song, Q. L. et al. Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation. Energy Environ. Sci. 5, 8359–8369 (2012).

    Article  CAS  Google Scholar 

  15. Cliffe, M. J. et al. Correlated defect nanoregions in a metal–organic framework. Nat. Commun. 5, 4176–4183 (2014).

    Article  CAS  Google Scholar 

  16. Zhu, Y. H. et al. Atomic resolution imaging of nanoscale structural ordering in a complex metal oxide catalyst. Chem. Mater. 24, 3269–3278 (2012).

    Article  CAS  Google Scholar 

  17. Hashimoto, A., Suenaga, K., Gloter, A., Urita, K. & Iijima, S. Direct evidence for atomic defects in graphene layers. Nature 430, 870–873 (2004).

    Article  CAS  Google Scholar 

  18. Zhu, Y. H., Wang, Q. X., Zhao, L. & Han, Y. Direct observation of surface reconstruction and termination on a complex metal oxide catalyst by electron microscopy. Angew. Chem. Int. Ed. 51, 4176–4180 (2012).

    Article  CAS  Google Scholar 

  19. Mayoral, A., Sanchez-Sanchez, M., Alfayate, A., Perez-Pariente, J. & Diaz, I. Atomic observations of microporous materials highly unstable under the electron beam: the cases of Ti-doped AlPO4-5 and Zn-MOF-74. Chemcatchem 7, 3719–3724 (2015).

    Article  CAS  Google Scholar 

  20. Li, X. M. et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat. Methods 10, 584–590 (2013).

    Article  CAS  Google Scholar 

  21. Bartesaghi, A. et al. 2.2 angstrom resolution cryo-EM structure of beta-galactosidase in complex with a cell-permeant inhibitor. Science 348, 1147–1151 (2015).

    Article  CAS  Google Scholar 

  22. Zou, X. D., Hovmöller, S. & Oleynikov, P. Electron Crystallography: Electron Microscopy and Electron Diffraction (Oxford Univ. Press, 2011).

    Book  Google Scholar 

  23. Yanai, N. & Granick, S. Directional self-assembly of a colloidal metal–organic framework. Angew. Chem. Int. Ed. 51, 5638–5641 (2012).

    Article  CAS  Google Scholar 

  24. Yanai, N., Sindoro, M., Yan, J. & Granick, S. Electric field-induced assembly of monodisperse polyhedral metal–organic framework crystals. J. Am. Chem. Soc. 135, 34–37 (2013).

    Article  CAS  Google Scholar 

  25. Utama, M. I. B. et al. Recent developments and future directions in the growth of nanostructures by van der Waals epitaxy. Nanoscale 5, 3570–3588 (2013).

    Article  CAS  Google Scholar 

  26. Hovmoller, S. CRISP: crystallographic image processing on a personal computer. Ultramicroscopy 41, 121–135 (1992).

    Article  Google Scholar 

  27. Pan, M. & Crozier, P. A. Low-dose high-resolution electron-microscopy of zeolite materials with a slow-scan CCD camera. Ultramicroscopy 48, 332–340 (1993).

    Article  Google Scholar 

  28. Rez, D., Rez, P. & Grant, I. Dirac–Fock calculations of X-ray scattering factors and contributions to the mean inner potential for electron-scattering. Acta Crystallogr. A 50, 481–497 (1994).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by competitive research funds (FCC/1/1972-19 and URF/1/2570-01-01) to Y.H. from King Abdullah University of Science and Technology. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. Additional support for B.Z. was provided by the NSF of China (Grant 21503165). We thank C. T. Koch from Humboldt-Universität zu Berlin and C. Ophus from Lawrence Berkeley National Laboratory for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. and Y.H. conceived and designed the experiments. J.C. and M.P. performed the low-dose high-resolution TEM image acquisition. Y.Z., J.C., M.P. and Y.H. carried out the TEM image processing, analysis and simulation. Y.Z., B.Z. and X.M. performed the theoretical simulations. Y.P., Z.L. and R.S. prepared the samples for imaging. C.-E.H. synthesized the ZIF-8 samples of various sizes and shapes. K.Y. and I.P. performed kinetic vapour adsorption experiments. Y.Z. drafted the manuscript and Y.H., J.C., M.P. and C.C. revised it. All authors commented on the manuscript.

Corresponding authors

Correspondence to Yihan Zhu, Ming Pan or Yu Han.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 7548 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Ciston, J., Zheng, B. et al. Unravelling surface and interfacial structures of a metal–organic framework by transmission electron microscopy. Nature Mater 16, 532–536 (2017). https://doi.org/10.1038/nmat4852

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4852

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing