Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reducing the efficiency–stability–cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells

Abstract

Technological deployment of organic photovoltaic modules requires improvements in device light-conversion efficiency and stability while keeping material costs low. Here we demonstrate highly efficient and stable solar cells using a ternary approach, wherein two non-fullerene acceptors are combined with both a scalable and affordable donor polymer, poly(3-hexylthiophene) (P3HT), and a high-efficiency, low-bandgap polymer in a single-layer bulk-heterojunction device. The addition of a strongly absorbing small molecule acceptor into a P3HT-based non-fullerene blend increases the device efficiency up to 7.7 ± 0.1% without any solvent additives. The improvement is assigned to changes in microstructure that reduce charge recombination and increase the photovoltage, and to improved light harvesting across the visible region. The stability of P3HT-based devices in ambient conditions is also significantly improved relative to polymer:fullerene devices. Combined with a low-bandgap donor polymer (PBDTTT-EFT, also known as PCE10), the two mixed acceptors also lead to solar cells with 11.0 ± 0.4% efficiency and a high open-circuit voltage of 1.03 ± 0.01 V.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical structures, energy levels and optical properties of materials used in this study.
Figure 2: Microstructural analysis of P3HT:IDTBR:IDFBR ternary blend.
Figure 3: Photovoltaic performances and EQE profiles of binary and ternary devices.
Figure 4: Charge carrier dynamics of inverted P3HT:IDTBR and P3HT:IDTBR:IDFBR devices.
Figure 5: Storage lifetime and photo-stability of P3HT:IDTBR:IDFBR and high-efficiency, low-bandgap polymer:fullerene devices.

Similar content being viewed by others

References

  1. Zhao, J. et al. A difluorobenzoxadiazole building block for efficient polymer solar cells. Adv. Mater. 28, 1868–1873 (2016).

    Article  CAS  Google Scholar 

  2. Hwang, Y.-J., Li, H., Courtright, B. A. E., Subramaniyan, S. & Jenekhe, S. A. Nonfullerene polymer solar cells with 8.5% efficiency enabled by a new highly twisted electron acceptor dimer. Adv. Mater. 28, 124-131 (2016).

    Article  Google Scholar 

  3. Zhang, J. et al. Conjugated polymer—small molecule alloy leads to high efficient ternary organic solar cells. J. Am. Chem. Soc. 137, 8176–8183 (2015).

    Article  CAS  Google Scholar 

  4. Yang, Y. et al. High-performance multiple-donor bulk heterojunction solar cells. Nat. Photon. 9, 190–198 (2015).

    Article  CAS  Google Scholar 

  5. Li, N. & Brabec, C. J. Air-processed polymer tandem solar cells with power conversion efficiency exceeding 10%. Energy Environ. Sci. 8, 2902–2909 (2015).

    Article  CAS  Google Scholar 

  6. Bannock, J. H. et al. Continuous synthesis of device-grade semiconducting polymers in droplet-based microreactors. Adv. Funct. Mater. 23, 2123–2129 (2013).

    Article  CAS  Google Scholar 

  7. Huang, Y.-C. et al. Small- and wide-angle X-ray scattering characterization of bulk heterojunction polymer solar cells with different fullerene derivatives. J. Phys. Chem. C 116, 10238–10244 (2012).

    Article  CAS  Google Scholar 

  8. Yin, W. & Dadmun, M. A new model for the morphology of P3HT/PCBM organic photovoltaics from small-angle neutron scattering: rivers and streams. ACS Nano 5, 4756–4768 (2011).

    Article  CAS  Google Scholar 

  9. Campoy-Quiles, M. et al. Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends. Nat. Mater. 7, 158–164 (2008).

    Article  CAS  Google Scholar 

  10. Dang, M. T., Hirsch, L. & Wantz, G. P3HT:PCBM, Best seller in polymer photovoltaic research. Adv. Mater. 23, 3597–3602 (2011).

    Article  CAS  Google Scholar 

  11. Holliday, S. et al. High efficiency and air stable P3HT based polymer solar cells with a new non-fullerene acceptor. Nat. Commun. 7, 11585 (2016).

    Article  CAS  Google Scholar 

  12. Holliday, S. et al. A rhodanine flanked nonfullerene acceptor for solution-processed organic photovoltaics. J. Am. Chem. Soc. 137, 898–904 (2015).

    Article  CAS  Google Scholar 

  13. Sun, D. et al. Non-fullerene-acceptor-based bulk-heterojunction organic solar cells with efficiency over 7%. J. Am. Chem. Soc. 137, 11156–11162 (2015).

    Article  CAS  Google Scholar 

  14. Liu, Y. et al. A tetraphenylethylene core-based 3D structure small molecular acceptor enabling efficient non-fullerene organic solar cells. Adv. Mater. 27, 1015–1020 (2015).

    Article  CAS  Google Scholar 

  15. Li, H. et al. Beyond fullerenes: design of nonfullerene acceptors for efficient organic photovoltaics. J. Am. Chem. Soc. 136, 14589–14597 (2014).

    Article  CAS  Google Scholar 

  16. Meng, D. et al. High-performance solution-processed non-fullerene organic solar cells based on selenophene-containing perylene bisimide acceptor. J. Am. Chem. Soc. 138, 375–380 (2016).

    Article  CAS  Google Scholar 

  17. Lin, H. et al. High-performance non-fullerene polymer solar cells based on a pair of donor–acceptor materials with complementary absorption properties. Adv. Mater. 27, 7299–7304 (2015).

    Article  CAS  Google Scholar 

  18. Li, S. et al. A spirobifluorene and diketopyrrolopyrrole moieties based non-fullerene acceptor for efficient and thermally stable polymer solar cells with high open-circuit voltage. Energy Environ. Sci. 9, 604–610 (2016).

    Article  CAS  Google Scholar 

  19. Khlyabich, P. P., Burkhart, B. & Thompson, B. C. Efficient ternary blend bulk heterojunction solar cells with tunable open-circuit voltage. J. Am. Chem. Soc. 133, 14534–14537 (2011).

    Article  CAS  Google Scholar 

  20. Lu, L., Chen, W., Xu, T. & Yu, L. High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes. Nat. Commun. 6, 7327 (2015).

    Article  CAS  Google Scholar 

  21. Ameri, T. et al. Morphology analysis of near IR sensitized polymer/fullerene organic solar cells by implementing low bandgap heteroanalogue C-/Si-PCPDTBT. J. Mater. Chem. A 2, 19461–19472 (2014).

    Article  CAS  Google Scholar 

  22. Gasparini, N. et al. An alternative strategy to adjust the recombination mechanism of organic photovoltaics by implementing ternary compounds. Adv. Energy Mater. 5, 1501527 (2015).

    Article  Google Scholar 

  23. Lu, L., Kelly, M. A., You, W. & Yu, L. Status and prospects for ternary organic photovoltaics. Nat. Photon. 9, 491–500 (2015).

    Article  CAS  Google Scholar 

  24. Zhang, Y. et al. Synergistic effect of polymer and small molecules for high-performance ternary organic solar cells. Adv. Mater. 27, 1071–1076 (2015).

    Article  CAS  Google Scholar 

  25. Khlyabich, P. P., Rudenko, A. E., Thompson, B. C. & Loo, Y.-L. Structural origins for tunable open-circuit voltage in ternary-blend organic solar cells. Adv. Funct. Mater. 25, 5557–5563 (2015).

    Article  CAS  Google Scholar 

  26. Ke, L. et al. A series of pyrene-substituted silicon phthalocyanines as near-IR sensitizers in organic ternary solar cells. Adv. Energy Mater. 6, 1502355 (2016).

    Article  Google Scholar 

  27. Ko, S.-J. et al. Improved performance in polymer solar cells using mixed PC61BM/PC71BM acceptors. Adv. Energy Mater. 5, 1401687 (2015).

    Article  Google Scholar 

  28. Cheng, P., Li, Y. & Zhan, X. Efficient ternary blend polymer solar cells with indene-C60 bisadduct as an electron-cascade acceptor. Energy Environ. Sci. 7, 2005–2011 (2014).

    Article  CAS  Google Scholar 

  29. Kang, H. et al. Effect of fullerene tris-adducts on the photovoltaic performance of P3HT:fullerene ternary blends. ACS Appl. Mater. Interfaces 5, 4401–4408 (2013).

    Article  CAS  Google Scholar 

  30. An, Q. et al. Simultaneous improvement in short circuit current, open circuit voltage, and fill factor of polymer solar cells through ternary strategy. ACS Appl. Mater. Interface 7, 3691–3698 (2015).

    Article  CAS  Google Scholar 

  31. Huang, T.-Y. et al. Efficient ternary bulk heterojunction solar cells based on small molecules only. J. Mater. Chem. A 3, 10512–10518 (2015).

    Article  CAS  Google Scholar 

  32. Nielsen, C. B., Holliday, S., Chen, H.-Y., Cryer, S. J. & McCulloch, I. Non-fullerene electron acceptors for use in organic solar cells. Acc. Chem. Res. 48, 2803–2812 (2015).

    Article  CAS  Google Scholar 

  33. Zhao, W. et al. Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv. Mater. 28, 4734–4739 (2016).

    Article  CAS  Google Scholar 

  34. Setayesh, S., Marsitzky, D. & Müllen, K. Bridging the gap between polyfluorene and ladder-poly-p-phenylene: synthesis and characterization of poly-2,8-indenofluorene. Macromolecules 33, 2016–2020 (2000).

    Article  CAS  Google Scholar 

  35. Chou, K. W. et al. Spin-cast bulk heterojunction solar cells: a dynamical investigation. Adv. Mater. 25, 1923–1929 (2013).

    Article  CAS  Google Scholar 

  36. Perez, L. A. et al. Solvent additive effects on small molecule crystallization in bulk heterojunction solar cells probed during spin casting. Adv. Mater. 25, 6380–6384 (2013).

    Article  CAS  Google Scholar 

  37. Abdelsamie, M. et al. Toward additive-free small-molecule organic solar cells: roles of the donor crystallization pathway and dynamics. Adv. Mater. 27, 7285–7292 (2015).

    Article  CAS  Google Scholar 

  38. Rivnay, J., Mannsfeld, S. C. B., Miller, C. E., Salleo, A. & Toney, M. F. Quantitative determination of organic semiconductor microstructure from the molecular to device scale. Chem. Rev. 112, 5488–5519 (2012).

    Article  CAS  Google Scholar 

  39. Richter, L. J. et al. In situ morphology studies of the mechanism for solution additive effects on the formation of bulk heterojunction films. Adv. Energy Mater. 5, 1400975 (2015).

    Article  Google Scholar 

  40. Credgington, D. & Durrant, J. R. Insights from transient optoelectronic analyses on the open-circuit voltage of organic solar cells. J. Phys. Chem. Lett. 3, 1465–1478 (2012).

    Article  CAS  Google Scholar 

  41. Baran, D. et al. Qualitative analysis of bulk-heterojunction solar cells without device fabrication: an elegant and contactless method. J. Am. Chem. Soc. 136, 10949–10955 (2014).

    Article  CAS  Google Scholar 

  42. Vandewal, K., Tvingstedt, K., Gadisa, A., Inganas, O. & Manca, J. V. On the origin of the open-circuit voltage of polymer-fullerene solar cells. Nat. Mater. 8, 904–909 (2009).

    Article  CAS  Google Scholar 

  43. Deotare, P. B. et al. Nanoscale transport of charge-transfer states in organic donor–acceptor blends. Nat. Mater. 14, 1130–1134 (2015).

    Article  CAS  Google Scholar 

  44. Shuttle, C. G., Hamilton, R., Nelson, J., O’Regan, B. C. & Durrant, J. R. Measurement of charge-density dependence of carrier mobility in an organic semiconductor blend. Adv. Funct. Mater. 20, 698–702 (2010).

    Article  CAS  Google Scholar 

  45. Dang, B., He, J., Hu, J. & Zhou, Y. Large improvement in trap level and space charge distribution of polypropylene by enhancing the crystalline–amorphous interface effect in blends. Polym. Int. 65, 371–379 (2016).

    Article  CAS  Google Scholar 

  46. Baran, D. et al. Role of polymer fractionation in energetic losses and charge carrier lifetimes of polymer: fullerene solar cells. J. Phys. Chem. C 119, 19668–19673 (2015).

    Article  CAS  Google Scholar 

  47. Tremolet de Villers, B. J. et al. Removal of residual diiodooctane improves photostability of high-performance organic solar cell polymers. Chem. Mater. 28, 876–884 (2016).

    Article  CAS  Google Scholar 

  48. García-Valverde, R., Cherni, J. A. & Urbina, A. Life cycle analysis of organic photovoltaic technologies. Prog. Photovolt. 18, 535–558 (2010).

    Article  Google Scholar 

  49. Espinosa, N., Hosel, M., Angmo, D. & Krebs, F. C. Solar cells with one-day energy payback for the factories of the future. Energy Environ. Sci. 5, 5117–5132 (2012).

    Article  CAS  Google Scholar 

  50. Adams, J. et al. Air-processed organic tandem solar cells on glass: toward competitive operating lifetimes. Energy Environ. Sci. 8, 169–176 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

D.B. thanks Helmholtz Association for a Helmholtz Postdoc Fellowship. S.H. thanks BASF for financial support. The authors acknowledge EC FP7 Project SC2 (610115), EC FP7 Project ArtESun (604397), and EPSRC Project EP/G037515/1 and EP/K030671/1, EC FP7 Project POLYMED (612538) and Project Synthetic carbon allotropes project SFB 953.

Author information

Authors and Affiliations

Authors

Contributions

D.B. and R.S.A. prepared the manuscript. S.H. and A.W. synthesized the non-fullerene acceptors. R.S.A. fabricated and characterized solar cell devices. D.B. and N.G. carried out CE and TPV measurements. M.A. performed the in situ GIWAXS and UV–Vis absorption measurements during spin coating. D.A.H. performed static GIWAXS measurements. J.A.R. did the SCLC measurements. S.L. performed the DSC measurements. R.S.A. and M.N. performed stability measurements. C.J.M.E. helped J.N. with EROI modelling. All authors discussed the results and commented on the manuscript. C.J.B. supervised charge extraction measurements. J.R.D. supervised TPV measurements, A.A. supervised in situ GIWAXS and UV–Vis measurements, A.S. supervised static GIWAXS measurements, T.K. and J.N. supervised SCLC, electroluminescence and EQE measurements. I.M. revised the manuscript and supervised and directed the project.

Corresponding authors

Correspondence to Derya Baran, Raja Shahid Ashraf or Iain McCulloch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1058 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baran, D., Ashraf, R., Hanifi, D. et al. Reducing the efficiency–stability–cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells. Nature Mater 16, 363–369 (2017). https://doi.org/10.1038/nmat4797

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4797

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing