Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Carrier generation and electronic properties of a single-component pure organic metal

A Corrigendum to this article was published on 01 September 2017

This article has been updated

Abstract

Metallic conduction generally requires high carrier concentration and wide bandwidth derived from strong orbital interaction between atoms or molecules. These requisites are especially important in organic compounds because a molecule is fundamentally an insulator; only multi-component salts with strong intermolecular interaction—namely, only charge transfer complexes and conducting polymers—have demonstrated intrinsic metallic behaviour. Herein we report a single-component electroactive molecule, zwitterionic tetrathiafulvalene(TTF)-extended dicarboxylate radical (TED), exhibiting metallic conduction even at low temperatures. TED exhibits d.c. conductivities of 530 S cm−1 at 300 K and 1,000 S cm−1 at 50 K with copper-like electronic properties. Spectroscopic and theoretical investigations of the carrier-generation mechanism and the electronic states of this single molecular species reveal a unique electronic structure with a spin-density gradient in the extended TTF moieties that becomes, in itself, a metallic state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular structure of zwitterionic tetrathiafulvalene-extended dicarboxylate radical (TED).
Figure 2: Electronic properties of TED.
Figure 3: Spectroscopic analyses for carrier generation in TED.
Figure 4: Structural and optical properties of TED.

Similar content being viewed by others

Change history

  • 09 August 2017

    In the version of this Article originally published, the sign of each x-axis value in Fig. 2d and its inset was incorrect. This has been corrected in the online version. This change does not affect the results of the paper.

  • 01 September 2017

    Nature Materials 16, 109–114 (2017); published online 10 October 2016; corrected after print 9 August 2017 In the version of this Article originally published, the sign of each x-axis value in Fig. 2d and its inset was incorrect. This has been corrected in the online version and the correct panel isshown here.

References

  1. Fraxedas, J. Molecular Organic Materials from Molecules to Crystalline Solids (Cambridge Univ. Press, 2006).

    Book  Google Scholar 

  2. Bourbonnais, C. & Jérome, D. in Advances in Synthetic Metals: Twenty Years of Progress in Science and Technology (eds Bernier, P., Lefrant, S. & Bidan, G.) 206–301 (Elsevier, 1999).

    Google Scholar 

  3. Ishiguro, T., Yamaji, K. & Saito, G. Organic Superconductors (Springer, 1998).

    Book  Google Scholar 

  4. Williams, J. M. et al. Organic Superconductors (Including Fullerenes: Synthesis, Structure, Properties, and Theory) (Prentice Hall, 1992).

    Google Scholar 

  5. Powell, B. J. & McKenzie, R. H. Strong electronic correlations in superconducting organic charge transfer salts. J. Phys. Condens. Matter 18, R827–R866 (2006).

    Article  CAS  Google Scholar 

  6. Heeger, A. J. Semiconducting and metallic polymers: the fourth generation of polymeric materials (Nobel Lecture). Angew. Chem. Int. Ed. 40, 2591–2611 (2001).

    Article  CAS  Google Scholar 

  7. Mulliken, R. S. Molecular compounds and their spectra. II. J. Am. Chem. Soc. 74, 811–824 (1952).

    Article  CAS  Google Scholar 

  8. Ferraris, J., Cowan, D. O., Walatka, V. Jr & Perlstein, J. H. Electron transfer in a new highly conducting donor-acceptor complex. J. Am. Chem. Soc. 95, 948–949 (1973).

    Article  CAS  Google Scholar 

  9. Tanaka, H., Okano, H., Kobayashi, H., Suzuki, W. & Kobayashi, A. A three-dimensional synthetic metallic crystal composed of single-component molecules. Science 291, 285–287 (2001).

    Article  CAS  Google Scholar 

  10. Haddon, R. C. Design of organic metals and superconductors. Nature 256, 394–396 (1975).

    Article  CAS  Google Scholar 

  11. Wong, J. W. L. et al. Pressure induced phase transitions and metallization of a neutral radical conductor. J. Am. Chem. Soc. 136, 1070–1081 (2014).

    Article  CAS  Google Scholar 

  12. Kobayashi, Y., Yoshioka, M., Saigo, K., Hashizume, D. & Ogura, T. Hydrogen-bonding-assisted self-doping in tetrathiafulvalene (TTF) conductor. J. Am. Chem. Soc. 113, 9995–10002 (2009).

    Article  Google Scholar 

  13. Terauchi, T., Kobayashi, Y., Iwai, H. & Tanaka, A. Protonic defect induced carrier doping in TTFCOONH4+: tunable doping level by solvent. Synth. Met. 162, 531–535 (2012).

    Article  CAS  Google Scholar 

  14. El-Ghayoury, A. et al. A neutral zwitterionic molecular solid. Chem. Eur. J. 16, 14051–14059 (2010).

    Article  CAS  Google Scholar 

  15. Isono, T. et al. Hydrogen bond-promoted metallic state in a purely organic single-component conductor under pressure. Nat. Commun. 4, 1344 (2013).

    Article  Google Scholar 

  16. Terauchi, T. et al. A stable metallic state of (TTPCOO)2NH4 with a mobile dopant. Chem. Commun. 50, 7111–7113 (2014).

    Article  CAS  Google Scholar 

  17. Nakamura, T., Furukawa, K., Terauchi, T. & Kobayashi, Y. Microscopic evidence of a metallic state in the one-pot organic conductor ammonium tetrathiapentalene carboxylate. Phys. Status Solidi 9, 480–484 (2015).

    CAS  Google Scholar 

  18. Terauchi, T., Kobayashi, Y. & Misaki, Y. Synthesis of bis-fused tetrathiafulvalene with mono- and dicarboxylic acids. Tetrahedron Lett. 53, 3277–3280 (2012).

    Article  CAS  Google Scholar 

  19. Mori, T. et al. Metal-insulator transition in the organic metal (TTM-TTP)I3 with a one-dimensional half-filled band. Phys. Rev. Lett. 79, 1702–1705 (1997).

    Article  CAS  Google Scholar 

  20. Dugdale, J. S. The Electrical Properties of Metals and Alloys (Edward Arnold Publishers Ltd, 1977).

    Google Scholar 

  21. Kanoda, K. Metal-insulator transition in κ-(ET)2X and (DCNQI)2M: Two contrasting manifestations of electron correlation. J. Phys. Soc. Jpn 75, 051007 (2006).

    Article  Google Scholar 

  22. Giffard, M. et al. The first evidence for the generation of radicals and formation of electrically conducting molecular materials by protic doping of tetrathiafulvalenes. Adv. Mater. 6, 298–300 (1994).

    Article  CAS  Google Scholar 

  23. Olaya, A. J. et al. Four-electron oxygen reduction by tetrathiafulvalene. J. Am. Chem. Soc. 133, 12115–12123 (2011).

    Article  CAS  Google Scholar 

  24. Gilli, P., Bertolasi, V., Ferretti, V. & Gilli, G. Covalent nature of the strong homonuclear hydrogen bond. study of the O-H—O system by crystal structure correlation methods. J. Am. Chem. Soc. 116, 909–915 (1994).

    Article  CAS  Google Scholar 

  25. Anderson, P. W. The Fermi glass: theory and experiment. Comments Solid State Phys. 2, 193–198 (1970).

    Article  Google Scholar 

  26. Kobayashi, A., Fujiwara, E. & Kobayashi, H. Single-component molecular metals with extended-TTF dithiolate ligands. Chem. Rev. 104, 5243–5264 (2004).

    Article  CAS  Google Scholar 

  27. Datta, A. & Pati, S. K. Dipolar interactions and hydrogen bonding in supramolecular aggregates: understanding cooperative phenomena for 1st hyperpolarizability. Chem. Soc. Rev. 35, 1305–1323 (2006).

    Article  CAS  Google Scholar 

  28. Misaki, Y. Tetrathiapentalene-based organic conductors. Sci. Technol. Adv. Mater. 10, 024301 (2009).

    Article  Google Scholar 

  29. Jursenas, S. et al. Free and self-trapped charge-transfer excitons in crystals of dipolar molecules of N,N-dimethylaminobenzylidene 1,3-indandione. J. Phys. Chem. B 102, 1086–1094 (1998).

    Article  CAS  Google Scholar 

  30. Frisch, M. J. et al. Gaussian 09 (Gaussian, 2009).

    Google Scholar 

  31. Becke, A. D. Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  32. Lee, C., Yang, W. & Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    Article  CAS  Google Scholar 

  33. Dunning, T. H. Jr Gaussian basis sets for use in correlated molecular calculations. J. Chem. Phys. 90, 1007–1023 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge C. Kloc (NTU), J. Hui (NTU) and T. Nakamura (IMS) for fruitful discussions. We also thank Y. Ide (NIMS), C. Nishimura (NIMS), M. Sumiya (NIMS), K. Tashiro (NIMS), H. Yoshikawa (NIMS) and M. Ohnuma (Hokkaido University) for discussions and technical support. We acknowledge S. Kurosawa (NIMS) and M. Takahashi (NIMS) for assistance in sample preparation and physical measurements. This study was partially supported by the ‘NEXT’ Program of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, and Nano-Integration Foundry and the ‘Low-Carbon Research Network’ in NIMS.

Author information

Authors and Affiliations

Authors

Contributions

Y.K. and T.T. prepared the materials. Y.K. carried out spectroscopic analyses and MO calculations. Y.K. and S.S. measured transport properties. Y.M. carried out XRD analysis. Y.K. conceived the project and wrote the manuscript.

Corresponding author

Correspondence to Yuka Kobayashi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 906 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, Y., Terauchi, T., Sumi, S. et al. Carrier generation and electronic properties of a single-component pure organic metal. Nature Mater 16, 109–114 (2017). https://doi.org/10.1038/nmat4768

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4768

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing