Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Measuring nonlinear stresses generated by defects in 3D colloidal crystals

Abstract

The mechanical, structural and functional properties of crystals are determined by their defects1,2,3,4, and the distribution of stresses surrounding these defects has broad implications for the understanding of transport phenomena. When the defect density rises to levels routinely found in real-world materials, transport is governed by local stresses that are predominantly nonlinear1,5,6,7,8. Such stress fields however, cannot be measured using conventional bulk and local measurement techniques. Here, we report direct and spatially resolved experimental measurements of the nonlinear stresses surrounding colloidal crystalline defect cores, and show that the stresses at vacancy cores generate attractive interactions between them. We also directly visualize the softening of crystalline regions surrounding dislocation cores, and find that stress fluctuations in quiescent polycrystals are uniformly distributed rather than localized at grain boundaries, as is the case in strained atomic polycrystals. Nonlinear stress measurements have important implications for strain hardening9, yield1,5 and fatigue10.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Particle-level stress measurements (SALSA).
Figure 2: Stress around a vacancy.
Figure 3: Dislocation stress.
Figure 4: Stress near grain boundaries.

Similar content being viewed by others

References

  1. Schiøtz, J., Di Tolla, F. D. & Jacobsen, K. W. Softening of nanocrystalline metals at very small grain sizes. Nature 391, 561–563 (1998).

    Article  Google Scholar 

  2. Peng, Y., Wang, Z., Alsayed, A. M., Yodh, A. G. & Han, Y. Melting of colloidal crystal films. Phys. Rev. Lett. 104, 205703 (2010).

    Article  CAS  Google Scholar 

  3. Alsayed, A. M., Islam, M. F., Zhang, J., Collings, P. J. & Yodh, A. G. Premelting at defects within bulk colloidal crystals. Science 309, 1207–1210 (2005).

    Article  CAS  Google Scholar 

  4. Hull, D. & Bacon, D. J. Introduction to Dislocations Vol. 257 (Pergamon Press, 1984).

    Google Scholar 

  5. Schiøtz, J. & Jacobsen, K. W. A maximum in the strength of nanocrystalline copper. Science 301, 1357–1359 (2003).

    Article  Google Scholar 

  6. Li, J., Van Vliet, K. J., Zhu, T., Yip, S. & Suresh, S. Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature 418, 307–310 (2002).

    Article  CAS  Google Scholar 

  7. Cai, W., Arsenlis, A., Weinberger, C. R. & Bulatov, V. V. A non-singular continuum theory of dislocations. J. Mech. Phys. Solids 54, 561–587 (2006).

    Article  CAS  Google Scholar 

  8. Lechner, W. & Dellago, C. Defect interactions in two-dimensional colloidal crystals: vacancy and interstitial strings. Soft Matter 5, 2752–2758 (2009).

    Article  CAS  Google Scholar 

  9. Bulatov, V. V. et al. Dislocation multi-junctions and strain hardening. Nature 440, 1174–1178 (2006).

    Article  CAS  Google Scholar 

  10. Stephens, R. I., Fatemi, A., Stephens, R. R. & Fuchs, H. O. Metal Fatigue in Engineering (John Wiley & Sons, 2000).

    Google Scholar 

  11. Huang, P. Y. et al. Imaging atomic rearrangements in two-dimensional silica glass: watching silica’s dance. Science 342, 224–227 (2013).

    Article  CAS  Google Scholar 

  12. Schall, P., Cohen, I., Weitz, D. A. & Spaepen, F. Visualizing dislocation nucleation by indenting colloidal crystals. Nature 440, 319–323 (2006).

    Article  CAS  Google Scholar 

  13. Bausch, A. R. et al. Grain boundary scars and spherical crystallography. Science 299, 1716–1718 (2003).

    Article  CAS  Google Scholar 

  14. Irvine, W. T. M., Vitelli, V. & Chaikin, P. M. Pleats in crystals on curved surfaces. Nature 468, 947–951 (2010).

    Article  CAS  Google Scholar 

  15. King, A., Johnson, G., Engelberg, D., Ludwig, W. & Marrow, J. Observations of intergranular stress corrosion cracking in a grain-mapped polycrystal. Science 321, 382–385 (2008).

    Article  CAS  Google Scholar 

  16. Levine, L. E. et al. X-ray microbeam measurements of individual dislocation cell elastic strains in deformed single-crystal copper. Nature Mater. 5, 619–622 (2006).

    Article  CAS  Google Scholar 

  17. Van Blaaderen, A., Ruel, R. & Wiltzius, P. Template-directed colloidal crystallization. Nature 385, 321–324 (1997).

    Article  Google Scholar 

  18. Dinsmore, A. D., Weeks, E. R., Prasad, V., Levitt, A. C. & Weitz, D. A. Three-dimensional confocal microscopy of colloids. Appl. Opt. 40, 4152–4159 (2001).

    Article  CAS  Google Scholar 

  19. Crocker, J. C. & Grier, D. G. Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179, 298–310 (1996).

    Article  CAS  Google Scholar 

  20. Bi, D., Zhang, J., Chakraborty, B. & Behringer, R. P. Jamming by shear. Nature 480, 355–358 (2011).

    Article  CAS  Google Scholar 

  21. Alder, B. J., Hoover, W. G. & Young, D. A. Studies in molecular dynamics. v. high-density equation of state and entropy for hard disks and spheres. J. Chem. Phys. 49, 3688–3696 (1968).

    Article  CAS  Google Scholar 

  22. Pronk, S. & Frenkel, D. Large difference in the elastic properties of fcc and hcp hard-sphere crystals. Phys. Rev. Lett. 90, 255501 (2003).

    Article  Google Scholar 

  23. Bennett, C. H. & Alder, B. J. Studies in molecular dynamics. IX. Vacancies in hard sphere crystals. J. Chem. Phys. 54, 4796–4808 (1971).

    Article  CAS  Google Scholar 

  24. DaSilva, L. C., Cândido, L., da F Costa, L. & Oliveira, O. N. Jr Formation energy and interaction of point defects in two-dimensional colloidal crystals. Phys. Rev. B 76, 035441 (2007).

    Article  Google Scholar 

  25. Gracie, R., Oswald, J. & Belytschko, T. On a new extended finite element method for dislocations: core enrichment and nonlinear formulation. J. Mech. Phys. Solids 56, 200–214 (2008).

    Article  Google Scholar 

  26. Friesen, C. & Thompson, C. V. Reversible stress relaxation during precoalescence interruptions of Volmer-Weber thin film growth. Phys. Rev. Lett. 89, 126103 (2002).

    Article  CAS  Google Scholar 

  27. Gokhale, S., Nagamanasa, H. K., Santhosh, V., Sood, A. K. & Ganapathy, R. Directional grain growth from anisotropic kinetic roughening of grain boundaries in sheared colloidal crystals. Proc. Natl Acad. Sci. USA 109, 20314–20319 (2012).

    Article  CAS  Google Scholar 

  28. Robinson, I. & Harder, R. Coherent X-ray diffraction imaging of strain at the nanoscale. Nature Mater. 8, 291–298 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank F. Spaepen, J. Schiøtz, T. Lubensky and the Cohen laboratory for useful discussions. J.P.S. and M.B. acknowledge funding from Department of Energy DOE-BES DE-FG02-07ER46393. P.S. acknowledges support by a VICI grant from the Netherlands Organization for Scientific Research (NWO). I.C. and N.Y.C.L. were supported by NSF DMR-CMP Award No. 1507607.

Author information

Authors and Affiliations

Authors

Contributions

N.Y.C.L., M.B., J.P.S. and I.C. conceived and designed the research, with later contributions from P.S.; N.Y.C.L. conducted the vacancy and polycrystal experiments, and P.S. conducted the dislocation experiment. M.B. conducted the simulations and developed the underlying theory. N.Y.C.L. and M.B. analysed the data. All authors discussed the results and wrote the manuscript.

Corresponding author

Correspondence to Neil Y. C. Lin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 6556 kb)

Supplementary Information

Supplementary Movie 1 (MP4 10484 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, N., Bierbaum, M., Schall, P. et al. Measuring nonlinear stresses generated by defects in 3D colloidal crystals. Nature Mater 15, 1172–1176 (2016). https://doi.org/10.1038/nmat4715

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4715

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing