Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrochemical stiffness in lithium-ion batteries

Abstract

Although lithium-ion batteries are ubiquitous in portable electronics, increased charge rate and discharge power are required for more demanding applications such as electric vehicles. The high-rate exchange of lithium ions required for more power and faster charging generates significant stresses and strains in the electrodes that ultimately lead to performance degradation. To date, electrochemically induced stresses and strains in battery electrodes have been studied only individually. Here, a new technique is developed to probe the chemomechanical response of electrodes by calculating the electrochemical stiffness via coordinated in situ stress and strain measurements. We show that dramatic changes in electrochemical stiffness occur due to the formation of different graphite–lithium intercalation compounds during cycling. Our analysis reveals that stress scales proportionally with the lithiation/delithiation rate and strain scales proportionally with capacity (and inversely with rate). Electrochemical stiffness measurements provide new insights into the origin of rate-dependent chemomechanical degradation and the evaluation of advanced battery electrodes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Methodology for electrochemical stiffness calculations.
Figure 2: Potential-dependent electrode response during cyclic voltammetry.
Figure 3: Coordination of stress and strain measurements and calculation of the electrochemical stiffness.
Figure 4: Asynchronous development of stress and strain.
Figure 5: Effect of the potential scan rate on the development of stress and strain in graphite electrodes.

Similar content being viewed by others

References

  1. Etacheri, V., Marom, R., Elazari, R., Salitra, G. & Aurbach, D. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4, 3243–3262 (2011).

    Article  CAS  Google Scholar 

  2. Zaghib, K., Mauger, A., Groult, H., Goodenough, J. B. & Julien, C. M. Advanced electrodes for high power Li-ion batteries. Materials 6, 1028–1049 (2013).

    Article  CAS  Google Scholar 

  3. Tavassol, H., Cason, M. W., Nuzzo, R. G. & Gewirth, A. A. Influence of oxides on the stress evolution and reversibility during SnOx conversion and Li-Sn alloying reactions. Adv. Energy Mater. 5, 1400317 (2015).

    Article  Google Scholar 

  4. Tavassol, H. et al. Surface coverage and SEI induced electrochemical surface stress changes during Li deposition in a model system for Li-ion battery anodes. J. Electrochem. Soc. 160, A888–A896 (2013).

    Article  CAS  Google Scholar 

  5. Sethuraman, V. A., Chon, M. J., Shimshak, M., Srinivasan, V. & Guduru, P. R. In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation. J. Power Sources 195, 5062–5066 (2010).

    Article  CAS  Google Scholar 

  6. Mukhopadhyay, A. et al. Engineering of graphene layer orientation to attain high rate capability and anisotropic properties in Li-ion battery electrodes. Adv. Funct. Mater. 23, 2397–2404 (2013).

    Article  CAS  Google Scholar 

  7. Chon, M. J., Sethuraman, V. A., McCormick, A., Srinivasan, V. & Guduru, P. R. Real-time measurement of stress and damage evolution during initial lithiation of crystalline silicon. Phys. Rev. Lett. 107, 045503 (2011).

    Article  CAS  Google Scholar 

  8. Mukhopadhyay, A., Tokranov, A., Xiao, X. & Sheldon, B. W. Stress development due to surface processes in graphite electrodes for Li-ion batteries: a first report. Electrochim. Acta 66, 28–37 (2012).

    Article  CAS  Google Scholar 

  9. Haiss, W. Surface stress of clean and adsorbate-covered solids. Rep. Prog. Phys. 64, 591–648 (2001).

    Article  CAS  Google Scholar 

  10. Sethuraman, V. A., Van Winkle, N., Abraham, D. P., Bower, A. F. & Guduru, P. R. Real-time stress measurements in lithium-ion battery negative-electrodes. J. Power Sources 206, 334–342 (2012).

    Article  CAS  Google Scholar 

  11. Mukhopadhyay, A., Tokranov, A., Sena, K., Xiao, X. & Sheldon, B. W. Thin film graphite electrodes with low stress generation during Li-intercalation. Carbon 49, 2742–2749 (2011).

    Article  CAS  Google Scholar 

  12. Eastwood, D. S. et al. Lithiation-induced dilation mapping in a lithium-ion battery electrode by 3D X-ray microscopy and digital volume correlation. Adv. Energy Mater. 4, 1300506 (2014).

    Article  Google Scholar 

  13. Ebner, M., Marone, F., Stampanoni, M. & Wood, V. Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries. Science 342, 716–720 (2013).

    Article  CAS  Google Scholar 

  14. Huang, J. Y. et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 1515–1520 (2010).

    Article  CAS  Google Scholar 

  15. Liu, X. H. et al. Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett. 11, 3312–3318 (2011).

    Article  CAS  Google Scholar 

  16. Jesse, S. et al. Direct mapping of ionic transport in a Si anode on the nanoscale: time domain electrochemical strain spectroscopy study. ACS Nano 5, 9682–9695 (2011).

    Article  CAS  Google Scholar 

  17. Balke, N. et al. Nanoscale mapping of ion diffusion in a lithium-ion battery cathode. Nature Nanotech. 5, 749–754 (2010).

    Article  CAS  Google Scholar 

  18. Lewis, R. B., Timmons, A., Mar, R. E. & Dahn, J. R. In situ AFM measurements of the expansion and contraction of amorphous Sn-Co-C films reacting with lithium. J. Electrochem. Soc. 154, A213–A216 (2007).

    Article  CAS  Google Scholar 

  19. Jones, E. M. C., Silberstein, M. N., White, S. R. & Sottos, N. R. In situ measurements of strains in composite battery electrodes during electrochemical cycling. Exp. Mech. 54, 971–985 (2014).

    Article  CAS  Google Scholar 

  20. Qi, Y. & Harris, S. J. In situ observation of strains during lithiation of a graphite electrode. J. Electrochem. Soc. 157, A741–A747 (2010).

    Article  CAS  Google Scholar 

  21. Ning, G., Haran, B. & Popov, B. N. Capacity fade study of lithium-ion batteries cycled at high discharge rates. J. Power Sources 117, 160–169 (2003).

    Article  CAS  Google Scholar 

  22. Buqa, H., Goers, D., Holzapfel, M., Spahr, M. E. & Novák, P. High rate capability of graphite negative electrodes for lithium-ion batteries. J. Electrochem. Soc. 152, A474–A481 (2005).

    Article  CAS  Google Scholar 

  23. Li, J., Murphy, E., Winnick, J. & Kohl, P. A. The effects of pulse charging on cycling characteristics of commercial lithium-ion batteries. J. Power Sources 102, 302–309 (2001).

    Article  CAS  Google Scholar 

  24. Li, Y. et al. Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes. Nature Mater. 13, 1149–1156 (2014).

    Article  CAS  Google Scholar 

  25. Mukhopadhyay, A. & Sheldon, B. W. Deformation and stress in electrode materials for Li-ion batteries. Prog. Mater. Sci. 63, 58–116 (2014).

    Article  CAS  Google Scholar 

  26. Sethuraman, V. A., Hardwick, L. J., Srinivasan, V. & Kostecki, R. Surface structural disordering in graphite upon lithium intercalation/deintercalation. J. Power Sources 195, 3655–3660 (2010).

    Article  CAS  Google Scholar 

  27. Hardwick, L. J., Buqa, H. & Novák, P. Graphite surface disorder detection using in situ Raman microscopy. Solid State Ion. 177, 2801–2806 (2006).

    Article  CAS  Google Scholar 

  28. Barsoukov, E., Kim, J. H., Kim, J. H., Yoon, C. O. & Lee, H. Kinetics of lithium intercalation into carbon anodes: in situ impedance investigation of thickness and potential dependence. Solid State Ion. 116, 249–261 (1999).

    Article  CAS  Google Scholar 

  29. Funabiki, A. et al. Impedance study on the electrochemical lithium intercalation into natural graphite powder. J. Electrochem. Soc. 145, 172–178 (1998).

    Article  CAS  Google Scholar 

  30. Levi, M. D., Markevich, E. & Aurbach, D. The effect of slow interfacial kinetics on the chronoamperometric response of composite lithiated graphite electrodes and on the calculation of the chemical diffusion coefficient of Li ions in graphite. J. Phys. Chem. B 109, 7420–7427 (2005).

    Article  CAS  Google Scholar 

  31. Verma, P., Maire, P. & Novák, P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim. Acta 55, 6332–6341 (2010).

    Article  CAS  Google Scholar 

  32. Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014).

    Article  CAS  Google Scholar 

  33. Tavassol, H., Buthker, J. W., Ferguson, G. A., Curtiss, L. A. & Gewirth, A. A. Solvent oligomerization during SEI formation on model systems for Li-ion battery anodes. J. Electrochem. Soc. 159, A730–A738 (2012).

    Article  CAS  Google Scholar 

  34. Dahn, J. R. Phase diagram of LixC6. Phys. Rev. B 44, 9170–9177 (1991).

    Article  CAS  Google Scholar 

  35. Aurbach, D., Levi, M. D., Levi, E. & Schechter, A. Failure and stabilization mechanisms of graphite electrodes. J. Phys. Chem. B 101, 2195–2206 (1997).

    Article  CAS  Google Scholar 

  36. Aurbach, D., Markovsky, B., Weissman, I., Levi, E. & Ein-Eli, Y. On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochim. Acta 45, 67–86 (1999).

    Article  CAS  Google Scholar 

  37. Aurbach, D. et al. Common electroanalytical behavior of Li intercalation processes into graphite and transition metal oxides. J. Electrochem. Soc. 145, 3024–3034 (1998).

    Article  CAS  Google Scholar 

  38. Dresselhaus, M. S. & Dresselhaus, G. Intercalation compounds of graphite. Adv. Phys. 30, 139–326 (1981).

    Article  CAS  Google Scholar 

  39. Stevens, D. A. & Dahn, J. R. The mechanisms of lithium and sodium insertion in carbon materials. J. Electrochem. Soc. 148, A803–A811 (2001).

    Article  CAS  Google Scholar 

  40. Takami, N., Satoh, A., Hara, M. & Ohsaki, T. Structural and kinetic characterization of lithium intercalation into carbon anodes for secondary lithium batteries. J. Electrochem. Soc. 142, 371–379 (1995).

    Article  CAS  Google Scholar 

  41. Haiss, W. Surface stress of clean and adsorbate-covered solids. Rep. Prog. Phys. 64, 591–644 (2001).

    Article  CAS  Google Scholar 

  42. Haiss, W., Nichols, R. J., Sass, J. K. & Charle, K. P. Linear correlation between surface stress and surface charge in anion adsorption on Au(111). J. Electroanalytical Chem. 452, 199–202 (1998).

    Article  CAS  Google Scholar 

  43. Drozdov, A. D. A model for the mechanical response of electrode particles induced by lithium diffusion in Li-ion batteries. Acta Mech. 225, 2987–3005 (2014).

    Article  Google Scholar 

  44. Goodenough, J. B. & Park, K.-S. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013).

    Article  CAS  Google Scholar 

  45. Van der Ven, A., Bhattacharya, J. & Belak, A. A. Understanding Li diffusion in Li-intercalation compounds. Acc. Chem. Res. 46, 1216–1225 (2013).

    Article  CAS  Google Scholar 

  46. Safran, S. A. Cooperative effects and staging n graphite intercalation compounds. Synth. Met. 2, 1–15 (1980).

    Article  CAS  Google Scholar 

  47. Dimiev, A. M. et al. Direct real-time monitoring of stage transitions in graphite intercalation compounds. ACS Nano 7, 2773–2780 (2013).

    Article  CAS  Google Scholar 

  48. Levi, M. D. & Aurbach, D. Simultaneous measurements and modeling of the electrochemical impedance and the cyclic voltammetric characteristics of graphite electrodes doped with lithium. J. Phys. Chem. B 101, 4630–4640 (1997).

    Article  CAS  Google Scholar 

  49. Persson, K. et al. Lithium diffusion in graphitic carbon. J. Phys. Chem. Lett. 1, 1176–1180 (2010).

    Article  CAS  Google Scholar 

  50. Zaghib, K., Song, X., Guerfi, A., Kostecki, R. & Kinoshita, K. Effect of particle morphology on lithium intercalation rates in natural graphite. J. Power Sources 124, 505–512 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Center for Electrochemical Energy Science, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences. E.M.C.J. acknowledges graduate fellowships through the National Science Foundation and the Beckman Institute for Advanced Science and Technology. The authors thank J. Lyding for use of spot welding equipment.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. H.T. performed all stress measurements, E.M.C.J. performed all strain measurements and electrochemical stiffness calculations, and H.T. and E.M.C.J. jointly performed all data analysis. All authors contributed to interpretation of the data, and all authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Nancy R. Sottos or Andrew A. Gewirth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3643 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavassol, H., Jones, E., Sottos, N. et al. Electrochemical stiffness in lithium-ion batteries. Nature Mater 15, 1182–1187 (2016). https://doi.org/10.1038/nmat4708

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4708

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing