Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Soliton-dependent plasmon reflection at bilayer graphene domain walls

Abstract

Layer-stacking domain walls in bilayer graphene are emerging as a fascinating one-dimensional system1,2,3,4,5,6,7,8,9,10,11 that features stacking solitons1,2,3,4 structurally and quantum valley Hall boundary states5,6,7,8,9,10,11 electronically. The interactions between electrons in the 2D graphene domains and the one-dimensional domain-wall solitons can lead to further new quantum phenomena. Domain-wall solitons of varied local structures exist along different crystallographic orientations1,2,12,13, which can exhibit distinct electrical, mechanical and optical properties. Here we report soliton-dependent 2D graphene plasmon reflection at different 1D domain-wall solitons in bilayer graphene using near-field infrared nanoscopy. We observe various domain-wall structures in mechanically exfoliated graphene bilayers, including network-forming triangular lattices, individual straight or bent lines, and even closed circles. The near-field infrared contrast of domain-wall solitons arises from plasmon reflection at domain walls, and exhibits markedly different behaviours at the tensile- and shear-type domain-wall solitons. In addition, the plasmon reflection at domain walls exhibits a peculiar dependence on electrostatic gating. Our study demonstrates the unusual and tunable coupling between 2D graphene plasmons and domain-wall solitons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nano-imaging of domain walls in bilayer graphene using the near-field infrared nanoscopy technique.
Figure 2: Near-field infrared images of a rich variety of bilayer graphene domain-wall structures.
Figure 3: Gate-dependent surface plasmon reflection at domain-wall solitons.
Figure 4: Plasmon reflectance and phase at the shear and tensile domain walls.

Similar content being viewed by others

References

  1. Alden, J. S. et al. Strain solitons and topological defects in bilayer graphene. Proc. Natl Acad. Sci. USA 110, 11256–11260 (2013).

    Article  CAS  Google Scholar 

  2. Butz, B. et al. Dislocations in bilayer graphene. Nature 505, 533–537 (2014).

    Article  CAS  Google Scholar 

  3. Yankowitz, M. et al. Electric field control of soliton motion and stacking in trilayer graphene. Nature Mater. 13, 786–789 (2014).

    Article  CAS  Google Scholar 

  4. Lin, J. H. et al. AC/AB stacking boundaries in bilayer graphene. Nano Lett. 13, 3262–3268 (2013).

    Article  CAS  Google Scholar 

  5. Yao, W., Yang, S. A. & Niu, Q. Edge states in graphene: from gapped flat-band to gapless chiral modes. Phys. Rev. Lett. 102, 096801 (2009).

    Article  Google Scholar 

  6. Ju, L. et al. Topological valley transport at bilayer graphene domain walls. Nature 520, 650–655 (2015).

    Article  CAS  Google Scholar 

  7. Zhang, F., Jung, J., Fiete, G. A., Niu, Q. & MacDonald, A. H. Spontaneous quantum Hall states in chirally stacked few-layer graphene systems. Phys. Rev. Lett. 106, 156801 (2011).

    Article  Google Scholar 

  8. Martin, I., Blanter, Y. M. & Morpurgo, A. F. Topological confinement in bilayer graphene. Phys. Rev. Lett. 100, 036804 (2008).

    Article  Google Scholar 

  9. Zhang, F., MacDonald, A. H. & Mele, E. J. Valley Chern numbers and boundary modes in gapped bilayer graphene. Proc. Natl Acad. Sci. USA 110, 10546–10551 (2013).

    Article  CAS  Google Scholar 

  10. Vaezi, A., Liang, Y. F., Ngai, D. H., Yang, L. & Kim, E.-A. Topological edge states at a tilt boundary in gated multilayer graphene. Phys. Rev. X 3, 021018 (2013).

    Google Scholar 

  11. Semenoff, G. W., Semenoff, V. & Zhou, F. Domain walls in gapped graphene. Phys. Rev. Lett. 101, 087204 (2008).

    Article  CAS  Google Scholar 

  12. Hattendorf, S., Georgi, A., Liebmann, M. & Morgenstern, M. Networks of ABA and ABC stacked graphene on mica observed by scanning tunneling microscopy. Surf. Sci. 610, 53–58 (2013).

    Article  CAS  Google Scholar 

  13. Lalmi, B. et al. Flower-shaped domains and wrinkles in trilayer epitaxial graphene on silicon carbide. Sci. Rep. 4, 4066 (2014).

    Article  CAS  Google Scholar 

  14. Oostinga, J. B., Heersche, H. B., Liu, X. L., Morpurgo, A. F. & Vandersypen, L. M. K. Gate-induced insulating state in bilayer graphene devices. Nature Mater. 7, 151–157 (2008).

    Article  CAS  Google Scholar 

  15. Dean, C. R. et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moire superlattices. Nature 497, 598–602 (2013).

    Article  CAS  Google Scholar 

  16. Velasco, J. Jr et al. Transport spectroscopy of symmetry-broken insulating states in bilayer graphene. Nature Nanotech. 7, 156–160 (2012).

    Article  CAS  Google Scholar 

  17. Novoselov, K. S. et al. Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene. Nature Phys. 2, 177–180 (2006).

    Article  Google Scholar 

  18. Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).

    Article  CAS  Google Scholar 

  19. Mak, K. F., Lui, C. H., Shan, J. & Heinz, T. F. Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy. Phys. Rev. Lett. 102, 256405 (2009).

    Article  Google Scholar 

  20. Yang, L., Deslippe, J., Park, C.-H., Cohen, M. L. & Louie, S. G. Excitonic effects on the optical response of graphene and bilayer graphene. Phys. Rev. Lett. 103, 186802 (2009).

    Article  Google Scholar 

  21. Aoki, M. & Amawashi, H. Dependence of band structures on stacking and field in layered graphene. Solid State Commun. 142, 123–127 (2007).

    Article  CAS  Google Scholar 

  22. Keilmann, F. & Hillenbrand, R. Near-field microscopy by elastic light scattering from a tip. Phil. Trans. R. Soc. A 362, 787–805 (2004).

    Article  CAS  Google Scholar 

  23. Novotny, L. & Hecht, B. Principles of Nano-Optics (Cambridge Univ. Press, 2006).

    Book  Google Scholar 

  24. Bechtel, H. A. et al. Ultrabroadband infrared nanospectroscopic imaging. Proc. Natl Acad. Sci. USA 111, 7191–7196 (2014).

    Article  CAS  Google Scholar 

  25. Gerber, J. A., Berweger, S., O’Callahan, B. T. & Raschke, M. B. Phase-resolved surface plasmon interferometry of graphene. Phys. Rev. Lett. 113, 055502 (2014).

    Article  Google Scholar 

  26. Fei, Z. et al. Electronic and plasmonic phenomena at graphene grain boundaries. Nature Nanotech. 8, 821–825 (2013).

    Article  CAS  Google Scholar 

  27. Hwang, E. H. & Das Sarma, S. Dielectric function, screening, and plasmons in two-dimensional graphene. Phys. Rev. B 75, 205418 (2007).

    Article  Google Scholar 

  28. Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

    Article  CAS  Google Scholar 

  29. Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).

    Article  CAS  Google Scholar 

  30. Ju, L. et al. Graphene plasmonics for tunable terahertz metamaterials. Nature Nanotech. 6, 630–634 (2011).

    Article  CAS  Google Scholar 

  31. Yan, H. et al. Tunable infrared plasmonic devices using graphene/insulator stacks. Nature Nanotech. 7, 330–334 (2012).

    Article  CAS  Google Scholar 

  32. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The near-field infrared nanoscopy measurements and plasmon analysis are supported by the Office of Basic Energy Science, Department of Energy under contract No. DE-AC02-05CH11231 (Sub-wavelength Metamaterial programme). The bilayer graphene domain-wall sample preparation and characterization are supported by the Office of Naval Research award No. N00014-15-1-2651 (device fabrication and characterization) and the National Science Foundation award No. DMR-1206512 (sample preparation). L.Jiang acknowledges support from the Chinese Academy of Sciences. T.J. acknowledges support from the NSF Graduate Research Fellowship Program under Grant No. DGE 1106400.

Author information

Authors and Affiliations

Authors

Contributions

F.W. and Z.S. conceived the project. L.Jiang, Z.S., T.J., B.Z. and L.Ju performed the near-field infrared measurements. C.J. and J.K. prepared the samples. L.Jiang, Z.S., S.W., J.-H.K., T.L. and F.W. analyse the data. All authors discussed the results and contributed to writing the manuscript.

Corresponding author

Correspondence to Feng Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 458 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Shi, Z., Zeng, B. et al. Soliton-dependent plasmon reflection at bilayer graphene domain walls. Nature Mater 15, 840–844 (2016). https://doi.org/10.1038/nmat4653

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4653

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing