Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Promoting solution phase discharge in Li–O2 batteries containing weakly solvating electrolyte solutions

Subjects

An Erratum to this article was published on 22 July 2016

This article has been updated

Abstract

On discharge, the Li–O2 battery can form a Li2O2 film on the cathode surface, leading to low capacities, low rates and early cell death, or it can form Li2O2 particles in solution, leading to high capacities at relatively high rates and avoiding early cell death. Achieving discharge in solution is important and may be encouraged by the use of high donor or acceptor number solvents or salts that dissolve the LiO2 intermediate involved in the formation of Li2O2. However, the characteristics that make high donor or acceptor number solvents good (for example, high polarity) result in them being unstable towards LiO2 or Li2O2. Here we demonstrate that introduction of the additive 2,5-di-tert-butyl-1,4-benzoquinone (DBBQ) promotes solution phase formation of Li2O2 in low-polarity and weakly solvating electrolyte solutions. Importantly, it does so while simultaneously suppressing direct reduction to Li2O2 on the cathode surface, which would otherwise lead to Li2O2 film growth and premature cell death. It also halves the overpotential during discharge, increases the capacity 80- to 100-fold and enables rates >1 mA cmareal−2 for cathodes with capacities of >4 mAh cmareal−2. The DBBQ additive operates by a new mechanism that avoids the reactive LiO2 intermediate in solution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cyclic voltammograms demonstrating the significant effect that DBBQ has on O2 reduction in ethers.
Figure 2: Significant effect of DBBQ on discharge in ethers.
Figure 3: SEM images showing the Li2O2 morphologies on discharge in 1 M LiTFSI in ethers with and without DBBQ.
Figure 4: Characterization of the discharge product confirming that Li2O2 is dominant.
Figure 5: In situ DEMS in DBBQ–TEGDME showing 2.03 e per O2 consumed, consistent with formation of Li2O2.
Figure 6: Schematics of reactions on discharge (left) and the effect of DBBQ on the potential determining step (right).

Similar content being viewed by others

Change history

  • 16 June 2016

    In the version of the Article originally published, the first author's name in ref. 43 should have read 'Giordani, V.'. This has been corrected in all versions of the Article.

References

  1. Abraham, K. M. & Jiang, Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 143, 1–5 (1996).

    CAS  Google Scholar 

  2. Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J.-M. Li–O2 and Li–S batteries with high energy storage. Nature Mater. 11, 19–29 (2012).

    CAS  Google Scholar 

  3. Girishkumar, G., McCloskey, B., Luntz, A. C., Swanson, S. & Wilcke, W. Lithium-air battery: promise and challenges. J. Phys. Chem. Lett. 1, 2193–2203 (2010).

    CAS  Google Scholar 

  4. Shao, Y. et al. Electrocatalysts for nonaqueous lithium-air batteries: status, challenges, and perspective. ACS Catal. 2, 844–857 (2012).

    CAS  Google Scholar 

  5. Christensen, J. et al. A critical review of Li/air batteries. J. Electrochem. Soc. 159, R1–R30 (2012).

    CAS  Google Scholar 

  6. Black, R., Adams, B. & Nazar, L. F. Non-aqueous and hybrid Li–O2 batteries. Adv. Energy Mater. 2, 801–815 (2012).

    CAS  Google Scholar 

  7. Choi, N. S. et al. Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem. Int. Ed. 51, 9994–10024 (2012).

    CAS  Google Scholar 

  8. Etacheri, V., Marom, R., Elazari, R., Salitra, G. & Aurbach, D. Challenges in the development of advanced Li–ion batteries: a review. Energy Environ. Sci. 4, 3243–3262 (2011).

    CAS  Google Scholar 

  9. Zhang, T. et al. A novel high energy density rechargeable lithium/air battery. Chem. Commun. 46, 1661–1663 (2010).

    CAS  Google Scholar 

  10. Luntz, A. C. & McCloskey, B. D. Nonaqueous Li–air batteries: a status report. Chem. Rev. 114, 11721–11750 (2014).

    CAS  Google Scholar 

  11. Li, F., Zhang, T. & Zhou, H. Challenges of non-aqueous Li–O2 batteries: electrolytes, catalysts, and anodes. Energy Environ. Sci. 6, 1125–1141 (2013).

    CAS  Google Scholar 

  12. Thackeray, M. M., Chan, M. K. Y., Trahey, L., Kirklin, S. & Wolverton, C. Vision for designing high-energy, hybrid Li ion/Li–O2cells. J. Phys. Chem. Lett. 4, 3607–3611 (2013).

    CAS  Google Scholar 

  13. Scrosati, B., Hassoun, J. & Sun, Y.-K. Lithium-ion batteries. A look into the future. Energy Environ. Sci. 4, 3287–3295 (2011).

    CAS  Google Scholar 

  14. Sharon, D. et al. Lithium-oxygen electrochemistry in non-aqueous solutions. Isr. J. Chem. 55, 508–520 (2015).

    CAS  Google Scholar 

  15. Johnson, L. et al. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li–O2 batteries. Nature Chem. 6, 1091–1099 (2014).

    CAS  Google Scholar 

  16. Aetukuri, N. B. et al. Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li–O2 batteries. Nature Chem. 7, 50–56 (2015).

    CAS  Google Scholar 

  17. Luntz, A. C. et al. Tunneling and polaron charge transport through Li2O2 in Li–O2 batteries. J. Phys. Chem. Lett. 4, 3494–3499 (2013).

    CAS  Google Scholar 

  18. Hummelshoj, J. S., Luntz, A. C. & Norskov, J. K. Theoretical evidence for low kinetic overpotentials in Li–O2 electrochemistry. J. Chem. Phys. 138, 034703 (2013).

    CAS  Google Scholar 

  19. Laoire, C. O., Mukerjee, S., Abraham, K. M., Plichta, E. J. & Hendrickson, M. A. Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium-air battery. J. Phys. Chem. C 114, 9178–9186 (2010).

    CAS  Google Scholar 

  20. Schwenke, K. U., Metzger, M., Restle, T., Piana, M. & Gasteiger, H. A. The influence of water and protons on Li2O2 crystal growth in aprotic Li–O2 cells. J. Electrochem. Soc. 162, A573–A584 (2015).

    CAS  Google Scholar 

  21. Adams, B. D. et al. Current density dependence of peroxide formation in the Li–O2 battery and its effect on charge. Energy Environ. Sci. 6, 1772–1778 (2013).

    CAS  Google Scholar 

  22. Burke, C. M., Pande, V., Khetan, A., Viswanathan, V. & McCloskey, B. D. Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li–O2 battery capacity. Proc. Natl Acad. Sci. USA 112, 9293–9298 (2015).

    CAS  Google Scholar 

  23. Aurbach, D. et al. The Catalytic Behavior of Lithium Nitrate in Li–O2 Batteries. The 228th ECS Meeting, Phoenix, Arizona, 11–15 October (2015).

    Google Scholar 

  24. Gunasekara, I., Mukerjee, S., Plichta, E. J., Hendrickson, M. A. & Abraham, K. M. A study of the influence of lithium salt anions on oxygen reduction reactions in Li–air batteries. J. Electrochem. Soc. 162, A1055–A1066 (2015).

    CAS  Google Scholar 

  25. Khetan, A., Luntz, A. & Viswanathan, V. Trade-offs in capacity and rechargeability in nonaqueous Li–O2 batteries: solution-driven growth versus nucleophilic stability. J. Phys. Chem. Lett. 6, 1254–1259 (2015).

    CAS  Google Scholar 

  26. Sharon, D. et al. Oxidation of dimethyl sulfoxide solutions by electrochemical reduction of oxygen. J. Phys. Chem. Lett. 4, 3115–3119 (2013).

    CAS  Google Scholar 

  27. Lacey, M. J., Frith, J. T. & Owen, J. R. A redox shuttle to facilitate oxygen reduction in the lithium air battery. Electrochem. Commun. 26, 74–76 (2013).

    CAS  Google Scholar 

  28. Yang, L., Frith, J. T., Garcia-Araez, N. & Owen, J. R. A new method to prevent degradation of lithium-oxygen batteries: reduction of superoxide by viologen. Chem. Commun. 51, 1705–1708 (2015).

    CAS  Google Scholar 

  29. Sun, D. et al. A solution-phase bifunctional catalyst for lithium-oxygen batteries. J. Am. Chem. Soc. 136, 8941–8946 (2014).

    CAS  Google Scholar 

  30. Matsuda, S., Hashimoto, K. & Nakanishi, S. Efficient Li2O2 formation via aprotic oxygen reduction reaction mediated by quinone derivatives. J. Phys. Chem. C 118, 18397–18400 (2014).

    CAS  Google Scholar 

  31. Imanishi, N., Luntz, A. C. & Bruce, P. G. The Lithium Air Battery: Fundamentals (Springer, 2014).

    Google Scholar 

  32. Guin, P. S., Das, S. & Mandal, P. C. Electrochemical reduction of quinones in different media: a review. Int. J. Electrochem. 2011, 1–22 (2011).

    Google Scholar 

  33. Saveant, J.-M. Elements of Molecular and Biomolecular Electrochemistry: An Electrochemical Approach to Electron Transfer Chemistry (John Wiley, 2006).

    Google Scholar 

  34. Hartmann, P. et al. A rechargeable room-temperature sodium superoxide (NaO2) battery. Nature Mater. 12, 228–232 (2013).

    CAS  Google Scholar 

  35. Ottakam Thotiyl, M. M., Freunberger, S. A., Peng, Z. & Bruce, P. G. The carbon electrode in nonaqueous Li–O2 cells. J. Am. Chem. Soc. 135, 494–500 (2013).

    CAS  Google Scholar 

  36. Chen, Y., Freunberger, S. A., Peng, Z., Fontaine, O. & Bruce, P. G. Charging a Li–O2 battery using a redox mediator. Nature Chem. 5, 489–494 (2013).

    Google Scholar 

  37. Lu, Y.-C. et al. The discharge rate capability of rechargeable Li–O2 batteries. Energy Environ. Sci. 4, 2999–3007 (2011).

    CAS  Google Scholar 

  38. McCloskey, B. D. et al. Combining accurate O2 and Li2O2 assays to separate discharge and charge stability limitations in nonaqueous Li–O2 batteries. J. Phys. Chem. Lett. 4, 2989–2993 (2013).

    CAS  Google Scholar 

  39. Freunberger, S. A. et al. The lithium-oxygen battery with ether-based electrolytes. Angew. Chem. Int. Ed. 50, 8609–8613 (2011).

    CAS  Google Scholar 

  40. Chen, Y., Freunberger, S. A., Peng, Z., Barde, F. & Bruce, P. G. Li–O2 battery with a dimethylformamide electrolyte. J. Am. Chem. Soc. 134, 7952–7957 (2012).

    CAS  Google Scholar 

  41. Adams, B. D. et al. Towards a stable organic electrolyte for the lithium oxygen battery. Adv. Energy Mater. 5, 1400867 (2015).

    Google Scholar 

  42. Zhang, Z. et al. Increased stability toward oxygen reduction products for lithium-air batteries with oligoether-functionalized silane electrolytes. J. Phys. Chem. C 115, 25535–25542 (2011).

    CAS  Google Scholar 

  43. Giordani, V. et al. Freely Diffusing Oxygen Evolving Catalysts for Rechargeable Li–O2 Batteries. Abstract for 16th IMLB 2012 Jeju Korea S6–3 (2012).

    Google Scholar 

  44. Bergner, B. J., Schurmann, A., Peppler, K., Garsuch, A. & Janek, J. TEMPO: a mobile catalyst for rechargeable Li–O2 batteries. J. Am. Chem. Soc. 136, 15054–15064 (2014).

    CAS  Google Scholar 

  45. Lim, H. D. et al. Superior rechargeability and efficiency of lithium-oxygen batteries: hierarchical air electrode architecture combined with a soluble catalyst. Angew. Chem. Int. Ed. 53, 3926–3931 (2014).

    CAS  Google Scholar 

  46. Trahan, M. J. et al. Cobalt phthalocyanine catalyzed lithium-air batteries. J. Electrochem. Soc. 160, A1577–A1586 (2013).

    CAS  Google Scholar 

  47. Lee, M. et al. Redox cofactor from biological energy transduction as molecularly tunable energy-storage compound. Angew. Chem. Int. Ed. 52, 8322–8328 (2013).

    CAS  Google Scholar 

  48. Hanyu, Y. & Honma, I. Rechargeable quasi-solid state lithium battery with organic crystalline cathode. Sci. Rep. 2, 453 (2012).

    Google Scholar 

  49. Peover, M. E. & Davis, J. D. The influence of ion-association on the polarography of quinones in dimethylformamide. J. Electroanal. Chem. 6, 46–53 (1963).

    CAS  Google Scholar 

  50. Koper, M. T. M. Thermodynamic theory of multi-electron transfer reactions: implications for electrocatalysis. J. Electroanal. Chem. 660, 254–260 (2011).

    CAS  Google Scholar 

  51. Ottakam Thotiyl, M. M. et al. A stable cathode for the aprotic Li–O2 battery. Nature Mater. 12, 1050–1056 (2013).

    CAS  Google Scholar 

  52. Hartmann, P. et al. A comprehensive study on the cell chemistry of the sodium superoxide (NaO2) battery. Phys. Chem. Chem. Phys. 15, 11661–11672 (2013).

    CAS  Google Scholar 

Download references

Acknowledgements

P.G.B. is indebted to the EPSRC and the RCUK Energy programme including SUPERGEN for financial support.

Author information

Authors and Affiliations

Authors

Contributions

X.G. and Y.C. designed experiments and analysed the data. X.G. performed electrochemical and characterization of discharge products. Y.C. performed the ultraviolet–visible spectroscopy experiments and analysed the data. P.G.B., X.G., Y.C. and L.J. interpreted the data. P.G.B. wrote the paper.

Corresponding author

Correspondence to Peter G. Bruce.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 579 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Chen, Y., Johnson, L. et al. Promoting solution phase discharge in Li–O2 batteries containing weakly solvating electrolyte solutions. Nature Mater 15, 882–888 (2016). https://doi.org/10.1038/nmat4629

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4629

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing