Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reconstructing solute-induced phase transformations within individual nanocrystals

Abstract

Strain and defects can significantly impact the performance of functional nanomaterials. This effect is well exemplified by energy storage systems, in which structural changes such as volume expansion and defect generation govern the phase transformations associated with charging and discharging. The rational design of next-generation storage materials therefore depends crucially on understanding the correlation between the structure of individual nanoparticles and their solute uptake and release. Here, we experimentally reconstruct the spatial distribution of hydride phases within individual palladium nanocrystals during hydrogen absorption, using a combination of electron spectroscopy, dark-field imaging, and electron diffraction in an environmental transmission electron microscope. We show that single-crystalline cubes and pyramids exhibit a uniform hydrogen distribution at equilibrium, whereas multiply twinned icosahedra exclude hydrogen from regions of high compressive strains. Our technique offers unprecedented insight into nanoscale phase transformations in reactive environments and can be extended to a variety of functional nanomaterials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural characterization and EELS of individual palladium nanoparticles.
Figure 2: EELS loading isotherms.
Figure 3: STEM-EELS maps of hydrogen distribution within nanoparticles.
Figure 4: Sub-particle pressure–lattice expansion isotherms.

Similar content being viewed by others

References

  1. Delmas, C., Maccario, M., Croguennec, L., Le Cras, F. & Weill, F. Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. Nature Mater. 7, 665–671 (2008).

    Article  CAS  Google Scholar 

  2. Dreyer, W. et al. The thermodynamic origin of hysteresis in insertion batteries. Nature Mater. 9, 448–453 (2010).

    Article  CAS  Google Scholar 

  3. Ebner, M., Marone, F., Stampanoni, M. & Wood, V. Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries. Science 342, 716–720 (2013).

    Article  CAS  Google Scholar 

  4. Aricò, A. S., Bruce, P., Scrosati, B., Tarascon, J.-M. & Van Schalwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nature Mater. 4, 366–377 (2005).

    Article  Google Scholar 

  5. Naumov, I. I., Bellaiche, L. & Fu, H. Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature 432, 737–740 (2004).

    Article  CAS  Google Scholar 

  6. Waser, R. & Aono, M. Nanoionics-based resistive switching memories. Nature Mater. 6, 833–840 (2007).

    Article  CAS  Google Scholar 

  7. Lopez, R., Haynes, T. E., Boatner, L. A., Feldman, L. C. & Haglund, R. F. Size effects in the structural phase transition of VO2 nanoparticles. Phys. Rev. B 65, 224113 (2002).

    Article  Google Scholar 

  8. Appavoo, K. et al. Role of defects in the phase transition of VO2 nanoparticles probed by plasmon resonance spectroscopy. Nano Lett. 12, 780–786 (2012).

    Article  CAS  Google Scholar 

  9. Pesin, D. & MacDonald, A. H. Spintronics and pseudospintronics in graphene and topological insulators. Nature Mater. 11, 409–416 (2012).

    Article  CAS  Google Scholar 

  10. Liu, H. et al. Capturing metastable structures during high-rate cycling of LiFePO4 nanoparticle electrodes. Science 344, 1252817 (2014).

    Article  Google Scholar 

  11. Baldi, A., Narayan, T. C., Koh, A. L. & Dionne, J. A. In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals. Nature Mater. 13, 1143–1148 (2014).

    Article  CAS  Google Scholar 

  12. Cogswell, D. A. & Bazant, M. Z. Theory of coherent nucleation in phase-separating nanoparticles. Nano Lett. 13, 3036–3041 (2013).

    Article  CAS  Google Scholar 

  13. Weissmüller, J. & Lemier, C. On the size dependence of the critical point of nanoscale interstitial solid solutions. Philos. Mag. Lett. 80, 411–418 (2000).

    Article  Google Scholar 

  14. Griessen, R., Strohfeldt, N. & Giessen, H. Thermodynamics of the hybrid interaction of hydrogen with palladium nanoparticles. Nature Mater. 15, 311–317 (2015).

    Article  Google Scholar 

  15. Yamauchi, M., Ikeda, R., Kitagawa, H. & Takata, M. Nanosize effects on hydrogen storage in palladium. J. Phys. Chem. C 112, 3294–3299 (2008).

    Article  CAS  Google Scholar 

  16. Everett, D. H. & Sermon, P. A. Crystallite size effects in the palladium/hydrogen system: a simultaneous sorption and X-ray study. Z. Phys. Chem. Neue Folge 114, 109–122 (1979).

    Article  CAS  Google Scholar 

  17. Pundt, A. et al. Hydrogen sorption in elastically soft stabilized Pd-clusters. J. Alloys Compd. 293–295, 480–483 (1999).

    Article  Google Scholar 

  18. Sachs, C. et al. Solubility of hydrogen in single-sized palladium clusters. Phys. Rev. B 64, 075408 (2001).

    Article  Google Scholar 

  19. Ingham, B. et al. Particle size effect of hydrogen-induced lattice expansion of palladium nanoclusters. Phys. Rev. B 78, 245408 (2008).

    Article  Google Scholar 

  20. Langhammer, C., Zhdanov, V. P., Zorić, I. & Kasemo, B. Size-dependent kinetics of hydriding and dehydriding of Pd nanoparticles. Phys. Rev. Lett. 104, 135502 (2010).

    Article  Google Scholar 

  21. Bardhan, R. et al. Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals. Nature Mater. 12, 905–912 (2013).

    Article  CAS  Google Scholar 

  22. Wadell, C. et al. Thermodynamics of hydride formation and decomposition in supported sub-10 nm Pd nanoparticles of different sizes. Chem. Phys. Lett. 603, 75–81 (2014).

    Article  CAS  Google Scholar 

  23. Ravnsbæk, D. B. et al. Extended solid solutions and coherent transformations in nanoscale olivine cathodes. Nano Lett. 14, 1484–1491 (2014).

    Article  Google Scholar 

  24. Borghols, W. J. H., Wagemaker, M., Lafont, U., Kelder, E. M. & Mulder, F. M. Size effects in the Li4+xTi5O12 spinel. J. Am. Chem. Soc. 131, 17786–17792 (2009).

    Article  CAS  Google Scholar 

  25. Wagemaker, M., Borghols, W. J. H. & Mulder, F. M. Large impact of particle size on insertion reactions. A case for anatase LixTiO2 . J. Am. Chem. Soc. 129, 4323–4327 (2007).

    Article  CAS  Google Scholar 

  26. Li, G. et al. Hydrogen storage in Pd nanocrystals covered with a metal–organic framework. Nature Mater. 13, 802–806 (2014).

    Article  CAS  Google Scholar 

  27. Syrenova, S. et al. Hydride formation thermodynamics and hysteresis in individual Pd nanocrystals with different size and shape. Nature Mater. 14, 1236–1244 (2015).

    Article  CAS  Google Scholar 

  28. Ulvestad, A. et al. Topological defect dynamics in operando battery nanoparticles. Science 348, 1344–1347 (2015).

    Article  CAS  Google Scholar 

  29. Ulvestad, A. et al. Avalanching strain dynamics during the hydriding phase transformation in individual palladium nanoparticles. Nature Commun. 6, 10092 (2015).

    Article  CAS  Google Scholar 

  30. Alefeld, G. & Völkl, J. Topics in Applied Physics: Hydrogen in Metals II Vol. 29 (Springer, 1978).

    Google Scholar 

  31. Brodowsky, H. On the non-ideal solution behavior of hydrogen. Ber. Bunsenges. Phys. Chem. 76, 740–746 (1972).

    CAS  Google Scholar 

  32. Bisson, L. et al. Formation of palladium nanostructures in a seed-mediated synthesis through an oriented-attachment-directed aggregation. Chem. Mater. 21, 2668–2678 (2009).

    Article  CAS  Google Scholar 

  33. Niu, W., Zhang, L. & Xu, G. Shape-controlled synthesis of single-crystalline palladium nanocrystals. ACS Nano 4, 1987–1996 (2010).

    Article  CAS  Google Scholar 

  34. Ogawa, S. & Ino, S. Formation of multiply-twinned particles in the nucleation stage of film growth. J. Vac. Sci. Technol. 6, 527–534 (1969).

    Article  CAS  Google Scholar 

  35. Cleveland, C. L. & Landman, U. The energetics and structure of nickel clusters: Size dependence. J. Chem. Phys. 94, 7376–96 (1991).

    Article  CAS  Google Scholar 

  36. Liu, D. R. & Brown, L. M. Characterization of palladium hydride films by electron energy loss spectroscopy and electron diffraction. Acta Metall. 36, 2597–2604 (1988).

    Article  CAS  Google Scholar 

  37. Bennett, P. & Fuggle, J. Electronic structure and surface kinetics of palladium hydride studied with x-ray photoelectron spectroscopy and electron-energy-loss spectroscopy. Phys. Rev. B 26, 6030–6039 (1982).

    Article  CAS  Google Scholar 

  38. Jaumot, J., Gargallo, R., de Juan, A. & Tauler, R. A graphical user-friendly interface for MCR-ALS: a new tool for multivariate curve resolution in MATLAB. Chemometr. Intell. Lab. 76, 101–110 (2005).

    Article  CAS  Google Scholar 

  39. Hunt, J. A. & Williams, D. B. Electron energy-loss spectrum-imaging. Ultramicroscopy 38, 47–73 (1991).

    Article  CAS  Google Scholar 

  40. Nelayah, J. et al. Mapping surface plasmons on a single metallic nanoparticle. Nature Phys. 3, 348–353 (2007).

    Article  CAS  Google Scholar 

  41. Enache, S., Lohstroh, W. & Griessen, R. Temperature dependence of magnetoresistance and Hall effect in Mg2NiHx films. Phys. Rev. B 69, 115326 (2004).

    Article  Google Scholar 

  42. Nicoletti, O. et al. Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles. Nature 502, 80–84 (2013).

    Article  CAS  Google Scholar 

  43. Pundt, A. & Kirchheim, R. Hydrogen in metals: microstructural aspects. Annu. Rev. Mater. Res. 36, 555–608 (2006).

    Article  CAS  Google Scholar 

  44. Howie, A. & Marks, L. D. Elastic strains and the energy balance for multiply twinned particles. Philos. Mag. A 49, 95–109 (1984).

    Article  CAS  Google Scholar 

  45. Mütschele, T. & Kirchheim, R. Hydrogen as a probe for the average thickness of a grain boundary. Scr. Metall. 21, 1101–1104 (1987).

    Article  Google Scholar 

  46. Seita, M., Hanson, J. P., Gradecak, S. & Demkowicz, M. J. The dual role of coherent twin boundaries in hydrogen embrittlement. Nature Commun. 6, 6164 (2015).

    Article  CAS  Google Scholar 

  47. Goris, B. et al. Measuring lattice strain in three dimensions through electron microscopy. Nano Lett. 15, 6996–7001 (2015).

    Article  Google Scholar 

  48. Warren, S. C. et al. Identifying champion nanostructures for solar water-splitting. Nature Mater. 12, 842–849 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge scientific feedback and discussions with all Dionne group members and R. Griessen. J.A.D. acknowledges support from a PECASE Award administered by the Air Force Office of Scientific Research (FA9550-15-1-0006) and a National Science Foundation CAREER Award (DMR-1151231). Funding from a Camille and Henry Dreyfus grant is gratefully acknowledged, as is salary support from an NSF CAREER Award (DMR-1151231) and a PECASE grant (FA9550-15-1-0006). This work was supported in part by a SLAC National Accelerator Laboratory LDRD award in concert with the Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under contract DE-AC02-76SF00515. Work was also supported by the research programme ‘Fellowships for Young Energy Scientists’ (YES!) of the Foundation for Fundamental Research on Matter (FOM), which is financially supported by the Netherlands Organisation for Scientific Research (NWO), and by an award from the Department of Energy (DOE) Office of Science Graduate Fellowship Program administered by the Oak Ridge Institute for Science and Education for the DOE. ORISE is managed by Oak Ridge Associated Universities (ORAU) under DOE contract number DE-AC05-06OR23100. All opinions expressed in this paper are the authors’ and do not necessarily reflect the policies and views of DOE, ORAU, or ORISE. Part of this work was performed at the Stanford Nano Shared Facilities (SNSF).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the design of the experiment. T.C.N., A.B. and A.L.K. carried out the experiment. T.C.N. and A.B. wrote the first draft of the manuscript and all authors assisted in the writing process and data analysis.

Corresponding author

Correspondence to Jennifer A. Dionne.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1791 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narayan, T., Baldi, A., Koh, A. et al. Reconstructing solute-induced phase transformations within individual nanocrystals. Nature Mater 15, 768–774 (2016). https://doi.org/10.1038/nmat4620

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4620

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing