Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Proton conduction in crystalline and porous covalent organic frameworks

This article has been updated

Abstract

Progress over the past decades in proton-conducting materials has generated a variety of polyelectrolytes1,2,3,4,5 and microporous polymers6,7,8,9,10. However, most studies are still based on a preconception that large pores eventually cause simply flow of proton carriers rather than efficient conduction of proton ions, which precludes the exploration of large-pore polymers for proton transport. Here, we demonstrate proton conduction across mesoporous channels in a crystalline covalent organic framework. The frameworks are designed to constitute hexagonally aligned, dense, mesoporous channels that allow for loading of N-heterocyclic proton carriers. The frameworks achieve proton conductivities that are 2–4 orders of magnitude higher than those of microporous and non-porous polymers. Temperature-dependent and isotopic experiments revealed that the proton transport in these channels is controlled by a low-energy-barrier hopping mechanism. Our results reveal a platform based on porous covalent organic frameworks for proton conduction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proton conduction across 1D mesopores of crystalline COFs.
Figure 2: Crystal structure and porosity of the mesoporous COF.
Figure 3: Impedance spectroscopy.
Figure 4: Arrhenius plots.

Similar content being viewed by others

Change history

  • 12 April 2016

    In the version of the Letter originally published, a word was erroneously repeated in the sentence beginning 'Our results reveal...' in the first paragraph. This has been corrected in all versions of the Letter.

References

  1. Higashihara, T., Matsumoto, K. & Ueda, M. Sulfonated aromatic hydrocarbon polymers as proton exchange membranes for fuel cells. Polymer 50, 5341–5357 (2009).

    Article  CAS  Google Scholar 

  2. Fang, J. et al. Novel sulfonated polyimides as polyelectrolytes for fuel cell application. 1. Synthesis, proton conductivity, and water stability of polyimides from 4,4’-diaminodiphenyl ether-2,2’-disulfonic acid. Macromolecules 35, 9022–9028 (2002).

    Article  CAS  Google Scholar 

  3. Xing, P., Robertson, G. P., Guiver, M. D., Mikhailenko, S. D. & Kaliaguine, S. Sulfonated poly(aryl ether ketone)s containing the hexafluoroisopropylidene diphenyl moiety prepared by direct copolymerization, as proton exchange membranes for fuel cell application. Macromolecules 37, 7960–7967 (2004).

    Article  CAS  Google Scholar 

  4. Mader, J. A. & Benicewicz, B. C. Sulfonated polybenzimidazoles for high temperature PEM fuel cells. Macromolecules 43, 6706–6715 (2010).

    Article  CAS  Google Scholar 

  5. Matsumoto, K., Higashihara, T. & Ueda, M. Locally and densely sulfonated poly(ether sulfone)s as proton exchange membrane. Macromolecules 42, 1161–1166 (2009).

    Article  CAS  Google Scholar 

  6. Shimizu, G. K., Taylor, J. M. & Kim, S. Proton conduction with metal-organic frameworks. Science 341, 354–355 (2013).

    Article  CAS  Google Scholar 

  7. Horike, S., Umeyama, D. & Kitagawa, S. Ion conductivity and transport by porous coordination polymers and metal-organic frameworks. Acc. Chem. Res. 46, 2376–2384 (2013).

    Article  CAS  Google Scholar 

  8. Yoon, M., Suh, K., Natarajan, S. & Kim, K. Proton conduction in metal-organic frameworks and related modularly built porous solids. Angew. Chem. Int. Ed. 52, 2688–2700 (2013).

    Article  CAS  Google Scholar 

  9. Xu, G., Otsubo, K., Yamada, T., Sakaida, S. & Kitagawa, H. Superprotonic conductivity in a highly oriented crystalline metal-organic framework nanofilm. J. Am. Chem. Soc. 135, 7438–7441 (2013).

    Article  CAS  Google Scholar 

  10. Jeong, N. C., Samanta, B., Lee, C. Y., Farha, O. K. & Hupp, J. T. Coordination-chemistry control of proton conductivity in the iconic metal-organic framework material HKUST-1. J. Am. Chem. Soc. 134, 51–54 (2012).

    Article  CAS  Google Scholar 

  11. Maffeo, C., Bhattacharya, S., Yoo, J., Wells, D. & Aksimentiev, A. Modeling and simulation of ion channels. Chem. Rev. 112, 6250–6284 (2012).

    Article  CAS  Google Scholar 

  12. Mauritz, K. A. & Moore, R. B. State of understanding of nafion. Chem. Rev. 104, 4535–4585 (2004).

    Article  CAS  Google Scholar 

  13. Schmidt-Rohr, K. & Chen, Q. Parallel cylindrical water nanochannels in Nafion fuel-cell membranes. Nature Mater. 7, 75–83 (2008).

    Article  CAS  Google Scholar 

  14. Xu, H. & Jiang, D. Covalent organic frameworks: crossing the channel. Nature Chem. 6, 564–566 (2014).

    Article  CAS  Google Scholar 

  15. Bureekaew, S. et al. One-dimensional imidazole aggregate in aluminium porous coordination polymers with high proton conductivity. Nature Mater. 8, 831–836 (2009).

    Article  CAS  Google Scholar 

  16. Hurd, J. A. et al. Anhydrous proton conduction at 150 °C in a crystalline metal-organic framework. Nature Chem. 1, 705–710 (2009).

    Article  CAS  Google Scholar 

  17. Feng, X., Ding, X. & Jiang, D. Covalent organic frameworks. Chem. Soc. Rev. 41, 6010–6022 (2012).

    Article  CAS  Google Scholar 

  18. Cote, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).

    Article  CAS  Google Scholar 

  19. Colson, J. W. et al. Oriented 2D covalent organic framework thin films on single-layer graphene. Science 332, 228–231 (2011).

    Article  CAS  Google Scholar 

  20. Chandra, S. et al. Phosphoric acid loaded azo (–N = N–) based covalent organic framework for proton conduction. J. Am. Chem. Soc. 136, 6570–6573 (2014).

    Article  CAS  Google Scholar 

  21. Kuhn, P., Antonietti, M. & Thomas, A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem. Int. Ed. 47, 3450–3453 (2008).

    Article  CAS  Google Scholar 

  22. Zhu, X. et al. A superacid-catalyzed synthesis of porous membranes based on triazine frameworks for CO2 separation. J. Am. Chem. Soc. 134, 10478–10484 (2012).

    Article  CAS  Google Scholar 

  23. Xu, H., Gao, J. & Jiang, D. Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. Nature Chem. 7, 905–912 (2015).

    Article  CAS  Google Scholar 

  24. DeBlase, C. R. et al. Rapid and efficient redox processes within 2D covalent organic framework thin films. ACS Nano 9, 3178–3183 (2015).

    Article  CAS  Google Scholar 

  25. Medina, D. D. et al. Room temperature synthesis of covalent-organic framework films through vapor-assisted conversion. J. Am. Chem. Soc. 137, 1016–1019 (2015).

    Article  CAS  Google Scholar 

  26. Kawada, W., McGhie, A. R. & Labes, M. M. Protonic conductivity in imidazole single crystal. J. Chem. Phys. 52, 3121–3125 (1970).

    Article  CAS  Google Scholar 

  27. Li, S., Zhou, Z., Zhang, Y. & Liu, M. 1H-1,2,4-triazole: an effective solvent for proton-conducting electrolytes. Chem. Mater. 17, 5884–5886 (2005).

    Article  CAS  Google Scholar 

  28. Aradi, B., Hourahine, B. & Frauenheim, T. DFTB +, a sparse matrix-based implementation of the DFTB method. J. Phys. Chem. A 111, 5678–5684 (2007).

    Article  CAS  Google Scholar 

  29. Lukose, B., Kuc, A. & Heine, T. Stability and electronic properties of 3D covalent organic frameworks. J. Mol. Model. 19, 2143–2148 (2013).

    Article  CAS  Google Scholar 

  30. Kuhnert, N., Rossignolo, G. M. & Lopez-Periago, A. The synthesis of trianglimines: on the scope and limitations of the [3 + 3] cyclocondensation reaction between (1R,2R)-diaminocyclohexane and aromatic dicarboxaldehydes. Org. Biomol. Chem. 1, 1157–1170 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

D.J. acknowledges the support of a Grant-in-Aid for Scientific Research (A) (24245030) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT).

Author information

Authors and Affiliations

Authors

Contributions

D.J. supervised and supported the project. H.X. conducted the experiments and computational calculations. S.T. performed porosity, conductivity and durability experiments. D.J. and H.X. wrote the manuscript.

Corresponding author

Correspondence to Donglin Jiang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4621 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Tao, S. & Jiang, D. Proton conduction in crystalline and porous covalent organic frameworks. Nature Mater 15, 722–726 (2016). https://doi.org/10.1038/nmat4611

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4611

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing