Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Organically linked iron oxide nanoparticle supercrystals with exceptional isotropic mechanical properties

Abstract

It is commonly accepted that the combination of the anisotropic shape and nanoscale dimensions of the mineral constituents of natural biological composites underlies their superior mechanical properties when compared to those of their rather weak mineral and organic constituents1. Here, we show that the self-assembly of nearly spherical iron oxide nanoparticles in supercrystals linked together by a thermally induced crosslinking reaction of oleic acid molecules leads to a nanocomposite with exceptional bending modulus of 114 GPa, hardness of up to 4 GPa and strength of up to 630 MPa. By using a nanomechanical model, we determined that these exceptional mechanical properties are dominated by the covalent backbone of the linked organic molecules. Because oleic acid has been broadly used as nanoparticle ligand, our crosslinking approach should be applicable to a large variety of nanoparticle systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the concept for a nanocomposite supercrystal with expectional mechanical properties.
Figure 2: Structural characterization of the nanocomposite.
Figure 3: Chemical characterization of the nanocomposite.
Figure 4: Mechanical characterization of the nanocomposite

Similar content being viewed by others

References

  1. Gao, H., Ji, B., Jäger, I. L., Arzt, E. & Fratzl, P. Materials become insensitive to flaws at nanoscale. Lessons from nature. Proc. Natl Acad. Sci. USA 100, 5597–5600 (2003).

    Article  CAS  Google Scholar 

  2. Meyers, M. A., Chen, P.-Y., Lin, Y.-M. A. & Seki, Y. Biological materials. Structure and mechanical properties. Prog. Mater. Sci. 53, 1–206 (2008).

    Article  CAS  Google Scholar 

  3. Fratzl, P. & Weinkamer, R. Nature’s hierarchical materials. Prog. Mater. Sci. 52, 1263–1334 (2007).

    Article  CAS  Google Scholar 

  4. Tang, Z., Kotov, N. A., Magonov, S. & Ozturk, B. Nanostructured artificial nacre. Nature Mater. 2, 413–418 (2003).

    Article  CAS  Google Scholar 

  5. Podsiadlo, P. et al. Ultrastrong and stiff layered polymer nanocomposites. Science 318, 80–83 (2007).

    Article  CAS  Google Scholar 

  6. Bonderer, L. J., Studart, A. R. & Gauckler, L. J. Bioinspired design and assembly of platelet reinforced polymer films. Science 319, 1069–1073 (2008).

    Article  CAS  Google Scholar 

  7. Walther, A. et al. Large-area, lightweight and thick biomimetric composites with superior material properties via fast, economic and green pathways. Nano Lett. 10, 2742–2748 (2010).

    Article  CAS  Google Scholar 

  8. Siglreitmeier, M. et al. Multifunctional layered magnetic composites. Beilstein J. Nanotech. 6, 134–148 (2015).

    Article  Google Scholar 

  9. Podsiadlo, P. et al. The role of order, nanocrystal size, and capping ligands in the collective mechanical response of three-dimensional nanocrystal solids. J. Am. Chem. Soc. 132, 8953–8960 (2010).

    Article  CAS  Google Scholar 

  10. Miszta, K. et al. Hierarchical self-assembly of suspended branched colloidal nanocrystals into superlattice structures. Nature Mater. 10, 872–876 (2011).

    Article  CAS  Google Scholar 

  11. Liaqat, F. et al. High-performance TiO2 nanoparticle/DOPA-polymer composites. Macromol. Rapid Commun. 36, 1129–1137 (2015).

    Article  CAS  Google Scholar 

  12. Bouville, F. et al. Strong, tough and stiff bioinspired ceramics from brittle constituents. Nature Mater. 13, 508–514 (2014).

    Article  CAS  Google Scholar 

  13. Studart, A. R. Bioinspired ceramics. Turning brittleness into toughness. Nature Mater. 13, 433–435 (2014).

    Article  CAS  Google Scholar 

  14. Munch, E. et al. Tough, bio-inspired hybrid materials. Science 322, 1516–1520 (2008).

    Article  CAS  Google Scholar 

  15. Launey, M. E. et al. Designing highly toughened hybrid composites through nature-inspired hierarchical complexity. Acta Mater. 57, 2919–2932 (2009).

    Article  CAS  Google Scholar 

  16. Weaver, J. C. et al. Analysis of an ultra hard magnetic biomineral in chiton radular teeth. Mater. Today 13, 42–52 (January–February, 2010).

    Article  CAS  Google Scholar 

  17. Dumont, M., Tütken, T., Kostka, A., Duarte, M. J. & Borodin, S. Structural and functional characterization of enamel pigmentation in shrews. J. Struct. Biol. 186, 38–48 (2014).

    Article  CAS  Google Scholar 

  18. Yu, W. W., Falkner, J. C., Yavuz, C. T. & Colvin, V. L. Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts. Chem. Commun. 20, 2306–2307 (2004).

    Article  Google Scholar 

  19. Yoo, D., Lee, J.-H., Shin, T.-H. & Cheon, J. Theranostic magnetic nanoparticles. Acc. Chem. Res. 44, 863–874 (2011).

    Article  CAS  Google Scholar 

  20. Lee, N. & Heyon, T. Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem. Soc. Rev. 41, 2575–2589 (2012).

    Article  CAS  Google Scholar 

  21. Gamba, O. et al. Adsorption of formic acid on the Fe3O4(001) surface. J. Phys. Chem. C 119, 20459–20465 (2015).

    Article  CAS  Google Scholar 

  22. Muhler, M., Schlögel, R. & Ertl, G. The nature of the iron oxide-based catalyst for dehydrogenation of ethylbenzene to styrene 2. Surface chemistry of the active phase. J. Catalys. 138, 413–444 (1992).

    Article  CAS  Google Scholar 

  23. Zhang, L., He, R. & Gu, H.-C. Oleic acid coating on the monodisperse magnetite nanoparticles. Appl. Surf. Sci. 253, 2611–2617 (2006).

    Article  CAS  Google Scholar 

  24. Bechtle, S. et al. Hierarchical flexural strength of enamel: transition from brittle to damage-tolerant behaviour. J. R. Soc. Interface 9, 1265–1274 (2012).

    Article  Google Scholar 

  25. Yilmaz, E. D., Jelitto, H. & Schneider, G. A. Uniaxial compressive behavior of micro-pillars of dental enamel characterized in multiple directions. Acta Biomater. 16, 187–195 (2015).

    Article  Google Scholar 

  26. Hugel, T., Rief, M., Seitz, M., Gaub, H. E. & Netz, R. R. Highly stretched single polymers: atomic-force-microscope experiments versus ab-initio theory. Phys. Rev. Lett. 94, 048301 (2005).

    Article  Google Scholar 

  27. Reichmann, H. J. & Jacobsen, S. D. High pressure elasticity of natural magnetite crystal. Am. Mineral. 89, 1061–1066 (2004).

    Article  CAS  Google Scholar 

  28. Stempflé, P., Pantalé, O., Rousseau, M., Lopez, E. & Bourrat, X. Mechanical properties of the elemental nanocomponents of nacre structure. Mater. Sci. Eng. C 30, 715–721 (2010).

    Article  Google Scholar 

  29. Hu, K., Gupta, M. K., Kulkarni, D. D. & Tsukruk, V. V. Ultra-robust graphene oxide-silk fibroin nanocomposite membranes. Adv. Mater. 25, 2301–2307 (2013).

    Article  Google Scholar 

  30. Kaushik, A. K., Waas, A. M. & Arruda, E. M. A constitutive model for finite deformation response of layered polyurethane–montmorillonite nanocomposites. Mech. Mater. 43, 186–193 (2011).

    Article  Google Scholar 

  31. Ang, S. F. et al. Comparison of mechanical behaviors of enamel rod and interrod regions in enamel. J. Mater. Res. 27, 448–456 (2012).

    Article  CAS  Google Scholar 

  32. Li, X., Chang, W.-C., Chao, Y.-J., Wang, R. & Chang, M. Nanoscale structural and mechanical characterization of a natural nanocomposite material: the shell of red abalone. Nano Lett. 4, 613–617 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the German Research Foundation (DFG) via SFB 986 ‘M3’, projects A1, A2, A6 and Z3. We would especially like to thank R. Schön (Hamburg University), D. Weinert (Hamburg University) and R. Schwaiger (Karlsruhe Institute of Technology) for the SEM-, HRTEM- and SHIM-measurements. S. Jördens is thanked for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

A.D. had the idea for the thermal treatment of nanosupercrystals, developed the material preparation and chose the analytical methods. A.F. synthesized the particles, analysed by A.K. using SEM, HRTEM and SAED, as well as by A.M. using SAXS, all of whom were supervised by H.W. T.K and A.K. analysed the material by TEM and SAED. H.N. and A.S. performed and analysed UHV-IRRAS and XPS. C.J. prepared the microcantilevers and micropillars by FIB. E.D.Y. performed and evaluated the micromechanical tests. V.A. contributed to this work in many discussions with G.A.S. and H.W. G.A.S. formulated the original task, had the idea for the microcantilever and micropillar experiments, formulated the analytical nanomechanical model, wrote the framework of the paper and supervised the investigations. All authors participated during all stages of the process.

Corresponding authors

Correspondence to Axel Dreyer or Gerold A. Schneider.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4770 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dreyer, A., Feld, A., Kornowski, A. et al. Organically linked iron oxide nanoparticle supercrystals with exceptional isotropic mechanical properties. Nature Mater 15, 522–528 (2016). https://doi.org/10.1038/nmat4553

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4553

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing