Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chiral damping of magnetic domain walls

Abstract

Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics1, current-induced spin–orbit torques2,3,4,5,6,7 and some topological magnetic structures8,9,10,11,12. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii–Moriya interaction (DMI) exhibit identical spatial symmetry13,14,15,16,17,18,19. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. 20).

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Graphic illustration of the asymmetric DW dynamics in PMA materials.
Figure 2: DW velocity modulation by Hip in Pt/Co/Pt layers.
Figure 3: Effect of chiral damping on thermally activated DW motion.
Figure 4: Influence of the layer structure on the DW motion asymmetry.

Similar content being viewed by others

References

  1. Khomskii, D. Classifying multiferroics: mechanisms and effects. Physics 2, 20 (2009).

    Article  Google Scholar 

  2. Chernyshov, A. et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin–orbit magnetic field. Nature Phys. 5, 656–659 (2009).

    Article  CAS  Google Scholar 

  3. Miron, I. M. et al. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nature Mater. 9, 230–234 (2010).

    Article  Google Scholar 

  4. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    Article  CAS  Google Scholar 

  5. Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    Article  CAS  Google Scholar 

  6. Fang, D. et al. Spin–orbit-driven ferromagnetic resonance. Nature Nanotech. 6, 413–417 (2011).

    Article  CAS  Google Scholar 

  7. Manchon, A. & Zhang, S. Theory of nonequilibrium intrinsic spin torque in a single nanomagnet. Phys. Rev. B 78, 212405 (2008).

    Article  Google Scholar 

  8. Dzyaloshinskii, I. E. Thermodynamic theory of weak ferromagnetism in antiferromagnetic substances. Sov. Phys. JETP 5, 1259–1262 (1957).

    Google Scholar 

  9. Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).

    Article  CAS  Google Scholar 

  10. Bode, M. et al. Chiral magnetic order at surfaces driven by inversion asymmetry. Nature 447, 190–193 (2007).

    Article  CAS  Google Scholar 

  11. Ishikawa, Y., Tajima, K., Bloch, D. & Roth, M. Helical spin structure in manganese silicide MnSi. Solid State Commun. 19, 525–528 (1976).

    Article  CAS  Google Scholar 

  12. Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    Article  Google Scholar 

  13. Thiaville, A., Rohart, S., Jué, É., Cros, V. & Fert, A. Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films. Europhys. Lett. 100, 57002 (2012).

    Article  Google Scholar 

  14. Ryu, K. S., Thomas, L., Yang, S. H. & Parkin, S. Chiral spin torque at magnetic domain walls. Nature Nanotech. 8, 527–533 (2013).

    Article  CAS  Google Scholar 

  15. Emori, S., Bauer, U., Ahn, S. M., Martinez, E. & Beach, G. S. Current-driven dynamics of chiral ferromagnetic domain walls. Nature Mater. 12, 611–616 (2013).

    Article  CAS  Google Scholar 

  16. Je, S.-G. et al. Asymmetric magnetic domain-wall motion by the Dzyaloshinskii–Moriya interaction. Phys. Rev. B 88, 214401 (2013).

    Article  Google Scholar 

  17. Hrabec, A. et al. Measuring and tailoring the Dzyaloshinskii–Moriya interaction in perpendicularly magnetized thin films. Phys. Rev. B 90, 020402 (2014).

    Article  Google Scholar 

  18. Torrejon, J. et al. Interface control of the magnetic chirality in CoFeB—MgO heterostructures with heavy metal underlayers. Nature Commun. 5, 4655 (2014).

    Article  CAS  Google Scholar 

  19. Chen, G. et al. Tailoring the chirality of magnetic domain walls by interface engineering. Nature Commun. 4, 2671 (2013).

    Article  Google Scholar 

  20. Sampaio, J., Cros, V., Rohart, S., Thiaville, A. & Fert, A. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nature Nanotech. 8, 839–844 (2013).

    Article  CAS  Google Scholar 

  21. Fert, A. & Levy, P. A. Role of anisotropic exchange interactions in determining the properties of spin glasses. Phys. Rev. Lett. 44, 1538–1541 (1980).

    Article  CAS  Google Scholar 

  22. Berger, L. Exchange interaction between ferromagnetic domain wall and electric current in very thin metallic films. J. Appl. Phys. 55, 1954–1956 (1984).

    Article  CAS  Google Scholar 

  23. Klaui, M. et al. Domain wall motion induced by spin polarized currents in ferromagnetic ring structures. Appl. Phys. Lett. 83, 105–107 (2003).

    Article  CAS  Google Scholar 

  24. Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).

    Article  CAS  Google Scholar 

  25. Gilbert, T. L. A phenomenological theory of damping in ferromagnetic materials. Magn. IEEE Trans. 40, 3443–3449 (2004).

    Article  CAS  Google Scholar 

  26. Gorchon, J. et al. Pinning-dependent field-driven domain wall dynamics and thermal scaling in an ultrathin Pt/Co/Pt magnetic film. Phys. Rev. Lett. 113, 027205 (2014).

    Article  CAS  Google Scholar 

  27. Ferré, J. et al. Universal magnetic domain wall dynamics in the presence of weak disorder. C. R. Phys. 14, 651–666 (2013).

    Article  Google Scholar 

  28. Chauve, P., Giamarchi, T. & Le Doussal, P. Creep and depinning in disordered media. Phys. Rev. B 62, 6241–6267 (2000).

    Article  CAS  Google Scholar 

  29. Lavrijsen, R. et al. Asymmetric magnetic bubble expansion under in-plane field in Pt/Co/Pt: effect of interface engineering. Phys. Rev. B 91, 104414 (2015).

    Article  Google Scholar 

  30. Zakeri, K., Zhang, Y., Chuang, T. H. & Kirschner, J. Magnon lifetimes on the Fe (110) surface: the role of spin–orbit coupling. Phys. Rev. Lett. 108, 197205 (2012).

    Article  Google Scholar 

  31. Freimuth, F., Blugel, S. & Mokrousov, Y. Berry phase theory of Dzyaloshinskii–Moriya interaction and spin–orbit torques. J. Phys. Condens. Matter 26, 104202 (2014).

    Article  CAS  Google Scholar 

  32. Kim, K. W., Lee, H. W., Lee, K. J. & Stiles, M. D. Chirality from interfacial spin–orbit coupling effects in magnetic bilayers. Phys. Rev. Lett. 111, 216601 (2013).

    Article  Google Scholar 

  33. Moon, K.-W. et al. Magnetic bubblecade memory based on chiral domain walls. Sci. Rep. 5, 9166 (2015).

    Article  Google Scholar 

  34. Allwood, D. A. et al. Magnetic domain-wall logic. Science 309, 1688–1692 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. W. Lee, K.-J. Lee and T. Giamarchi for helpful discussions, as well as A. Thiaville, S. Pizzini and J. Vogel for critically reading the manuscript and discussing the results. This work was partially supported by the ANR (11 BS10 008, ESPERADO) project and European Commission under the Seventh Framework Programme (GA 318144, SPOT) and (GA-2012-322369, Sport for Memory). A.M. has been supported by King Abdullah University of Science and Technology.

Author information

Authors and Affiliations

Authors

Contributions

E.J., C.K.S., G.G., A.M. and I.M.M. planned the experiment; I.M.M., M.D., A.L. and S.A. fabricated the samples. C.K.S., E.J., P.B. and I.M.M. performed the experiments; L.B.-P. and I.M.M. performed the numerical simulations; E.J., C.K.S., A.M. and I.M.M. analysed the data; I.M.M. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Ioan Mihai Miron.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1236 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jué, E., Safeer, C., Drouard, M. et al. Chiral damping of magnetic domain walls. Nature Mater 15, 272–277 (2016). https://doi.org/10.1038/nmat4518

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4518

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing