Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Adsorption of water at the SrO surface of ruthenates

Abstract

Although perovskite oxides hold promise in applications ranging from solid oxide fuel cells to catalysts, their surface chemistry is poorly understood at the molecular level. Here we follow the formation of the first monolayer of water at the (001) surfaces of Srn+1RunO3n+1 (n = 1, 2) using low-temperature scanning tunnelling microscopy, X-ray photoelectron spectroscopy, and density functional theory. These layered perovskites cleave between neighbouring SrO planes, yielding almost ideal, rocksalt-like surfaces. An adsorbed monomer dissociates and forms a pair of hydroxide ions. The OH stemming from the original molecule stays trapped at Sr–Sr bridge positions, circling the surface OH with a measured activation energy of 187 ± 10 meV. At higher coverage, dimers of dissociated water assemble into one-dimensional chains and form a percolating network where water adsorbs molecularly in the gaps. Our work shows the limitations of applying surface chemistry concepts derived for binary rocksalt oxides to perovskites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Water adsorption at cleaved strontium ruthenate single crystals.
Figure 2: Dissociated water forming a ‘dynamic ion pair’.
Figure 3: Formation of H2O chains.
Figure 4: Full monolayer of water.
Figure 5: Interaction of water with O vacancies.

Similar content being viewed by others

References

  1. Adler, S. B., Lane, J. A. & Steele, B. Electrode kinetics of porous mixed-conducting oxygen electrodes. J. Electrochem. Soc. 144, 1881–1884 (1996).

    Google Scholar 

  2. Kilner, J. A. & Burriel, M. Materials for intermediate-temperature solid-oxide fuel cells. Annu. Rev. Mater. Res. 44, 365–393 (2014).

    Article  CAS  Google Scholar 

  3. Tarancón, A., Burriel, M., Santiso, J., Skinner, S. & Kilner, J. Advances in layered oxide cathodes for intermediate temperature solid oxide fuel cells. J. Mater. Chem. 20, 3799–3813 (2010).

    Article  Google Scholar 

  4. Gorte, R. J. & Vohs, J. M. Catalysis in solid oxide fuel cells. Annu. Rev. Chem. Biomol. Eng. 2, 9–30 (2011).

    Article  CAS  Google Scholar 

  5. Graves, C., Ebbesen, S. D., Jensen, S. H., Simonsen, S. B. & Mogensen, M. B. Eliminating degradation in solid oxide electrochemical cells by reversible operation. Nature Mater. 14, 239–244 (2014).

    Article  Google Scholar 

  6. Laguna-Bercero, M. A. Recent advances in high temperature electrolysis using solid oxide fuel cells: A review. J. Power Sources 203, 4–16 (2012).

    Article  CAS  Google Scholar 

  7. Tsekouras, G. & Irvine, J. T. S. The role of defect chemistry in strontium titanates utilised for high temperature steam electrolysis. J. Mater. Chem. 21, 9367–9376 (2011).

    Article  CAS  Google Scholar 

  8. Habib, M. A., Nemitallah, M. & Ben-Mansour, R. Recent development in oxy-combustion technology and its applications to gas turbine combustors and ITM reactors. Energy Fuels 27, 2–19 (2013).

    Article  CAS  Google Scholar 

  9. McDaniel, A. H. et al. Sr- and Mn-doped LaAlO3−δ for solar thermochemical H2 and CO production. Energy Environ. Sci. 6, 2424–2428 (2013).

    Article  CAS  Google Scholar 

  10. Suntivich, J. et al. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nature Chem. 3, 546–550 (2011).

    Article  CAS  Google Scholar 

  11. Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B. & Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383–1385 (2011).

    Article  CAS  Google Scholar 

  12. Freund, H.-J. & Pacchioni, G. Oxide ultra-thin films on metals: New materials for the design of supported metal catalysts. Chem. Soc. Rev. 37, 2224–2242 (2008).

    Article  CAS  Google Scholar 

  13. Besenbacher, F. et al. Design of a surface alloy catalyst for steam reforming. Science 279, 1913–1915 (1998).

    Article  CAS  Google Scholar 

  14. Siahrostami, S. et al. Enabling direct H2O2 production through rational electrocatalyst design. Nature Mater. 12, 1137–1143 (2013).

    Article  CAS  Google Scholar 

  15. Burriel, M. et al. Absence of Ni on the outer surface of Sr doped La2NiO4 single crystals. Energy Environ. Sci. 7, 311–316 (2013).

    Article  Google Scholar 

  16. Lee, W., Han, J. W., Chen, Y., Cai, Z. & Yildiz, B. Cation size mismatch and charge interactions drive dopant segregation at the surfaces of manganite perovskites. J. Am. Chem. Soc. 135, 7909–7925 (2013).

    Article  CAS  Google Scholar 

  17. Kubicek, M., Limbeck, A., Frömling, T., Hutter, H. & Fleig, J. Relationship between cation segregation and the electrochemical oxygen reduction kinetics of La0.6Sr0.4CoO3−δ thin film electrodes. J. Electrochem. Soc. 158, B727 (2011).

    Article  CAS  Google Scholar 

  18. Oh, D., Gostovic, D. & Wachsman, E. D. Mechanism of La0.6Sr0.4Co0.2Fe0.8O3 cathode degradation. J. Mater. Res. 27, 1992–1999 (2012).

    Article  CAS  Google Scholar 

  19. Jung, W. & Tuller, H. L. Investigation of surface Sr segregation in model thin film solid oxide fuel cell perovskite electrodes. Energy Environ. Sci. 5, 5370–5378 (2012).

    Article  CAS  Google Scholar 

  20. Thiel, P. A. & Madey, T. E. The interaction of water with solid surfaces—fundamental aspects. Surf. Sci. Rep. 7, 211–385 (1987).

    Article  CAS  Google Scholar 

  21. Henderson, M. A. The interaction of water with solid surfaces: Fundamental aspects revisited. Surf. Sci. Rep. 46, 1–308 (2002).

    Article  CAS  Google Scholar 

  22. Ewing, G. E. Ambient thin film water on insulator surfaces. Chem. Rev. 106, 1511–1526 (2006).

    Article  CAS  Google Scholar 

  23. Joo, J. H., Merkle, R. & Maier, J. Effects of water on oxygen surface exchange and degradation of mixed conducting perovskites. J. Power Sources 196, 7495–7499 (2011).

    Article  CAS  Google Scholar 

  24. Bucher, E., Sitte, W., Klauser, F. & Bertel, E. Impact of humid atmospheres on oxygen exchange properties, surface-near elemental composition, and surface morphology of La0.6Sr0.4CoO3−δ . Solid State Ion. 208, 43–51 (2012).

    Article  CAS  Google Scholar 

  25. Cai, Z., Kubicek, M., Fleig, J. & Yildiz, B. Chemical heterogeneities on La0.6Sr0.4CoO3−δ thin films—correlations to cathode surface activity and stability. Chem. Mater. 24, 1116–1127 (2012).

    Article  CAS  Google Scholar 

  26. Carrasco, J., Illas, F. & Lopez, N. Dynamic ion pairs in the adsorption of isolated water molecules on alkaline-earth oxide (001) surfaces. Phys. Rev. Lett. 100, 016101 (2008).

    Article  Google Scholar 

  27. Grönbeck, H. & Panas, I. Ab initio molecular dynamics calculations of H2O on BaO(001). Phys. Rev. B 77, 245419 (2008).

    Article  Google Scholar 

  28. Hu, X. L., Carrasco, J., Klimes, J. & Michaelides, A. Trends in water monomer adsorption and dissociation on flat insulating surfaces. Phys. Chem. Chem. Phys. 13, 21652 (2011).

    Google Scholar 

  29. Giordano, L., Goniakowski, J. & Suzanne, J. Partial dissociation of water molecules in the (3 × 2) water monolayer deposited on the MgO (100) surface. Phys. Rev. Lett. 81, 1271–1273 (1998).

    Article  CAS  Google Scholar 

  30. Shin, H. J. et al. State-selective dissociation of a single water molecule on an ultrathin MgO film. Nature Mater. 9, 442–447 (2010).

    Article  CAS  Google Scholar 

  31. Zhao, X. et al. Formation of water chains on CaO(001): What drives the 1D growth? J. Phys. Chem. Lett. 6, 1204–1208 (2015).

    Article  CAS  Google Scholar 

  32. Newberg, J. T. et al. Autocatalytic surface hydroxylation of MgO(100) terrace sites observed under ambient conditions. J. Phys. Chem. C 115, 12864–12872 (2011).

    Article  CAS  Google Scholar 

  33. Wlodarczyk, R. et al. Structures of the ordered water monolayer on MgO(001). J. Phys. Chem. C 115, 6764–6774 (2011).

    Article  CAS  Google Scholar 

  34. Stöger, B. et al. Point defects at cleaved Srn+1RunO3n+1 surfaces. Phys. Rev. B 90, 165438 (2014).

    Article  Google Scholar 

  35. Matzdorf, R. et al. Ferromagnetism stabilized by lattice distortion at the surface of the p-wave superconductor Sr2RuO4 . Science 289, 746–748 (2000).

    Article  CAS  Google Scholar 

  36. Hu, B. et al. Surface and bulk structural properties of single-crystalline Sr3Ru2O7 . Phys. Rev. B 81, 184104 (2010).

    Article  Google Scholar 

  37. Stöger, B. et al. High chemical activity of a perovskite surface: Reaction of CO with Sr3Ru2O7 . Phys. Rev. Lett. 113, 116101 (2014).

    Article  Google Scholar 

  38. Guhl, H., Miller, W. & Reuter, K. Water adsorption and dissociation on SrTiO3(001) revisited: A density functional theory study. Phys. Rev. B 81, 155455 (2010).

    Article  Google Scholar 

  39. Wrigley, J., Twigg, M. & Ehrlich, G. Lattice walks by long jumps. J. Chem. Phys. 93, 2885–2902 (1990).

    Article  CAS  Google Scholar 

  40. Singh, D. Relationship of Sr2RuO4 to the superconducting layered cuprates. Phys. Rev. B 52, 1358–1361 (1995).

    Article  CAS  Google Scholar 

  41. Iwahori, K. et al. Nanoscale composition analysis of atomically flat SrTiO (001) by friction force microscopy. J. Appl. Phys. 88, 7099–7103 (2000).

    Article  CAS  Google Scholar 

  42. Stoerzinger, K. A. et al. Water reactivity on the LaCoO3(001) surface: An ambient pressure x-ray photoelectron spectroscopy study. J. Phys. Chem. C 118, 19733–19741 (2014).

    Article  CAS  Google Scholar 

  43. Mitsui, T., Rose, M. K., Fomin, E., Ogletree, D. F. & Salmeron, M. Water diffusion and clustering on Pd(111). Science 297, 1850–1852 (2002).

    Article  CAS  Google Scholar 

  44. Merte, L. R. et al. Water-mediated proton hopping on an iron oxide surface. Science 336, 889–893 (2012).

    Article  CAS  Google Scholar 

  45. Mao, Z. Q., Maenoab, Y. & Fukazawa, H. Crystal growth of Sr2RuO4 . Mater. Res. Bull. 35, 1813–1824 (2000).

    Article  CAS  Google Scholar 

  46. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  47. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  48. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  49. Klimeš, J., Bowler, D. R. & Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter. 22, 022201 (2009).

    Article  Google Scholar 

  50. Henkelman, G. & Jónsson, H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 111, 7010–7022 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the ERC Advanced Grant ‘OxideSurfaces’ and by the Austrian Science Fund (FWF, Project F45). The Tulane team (D.F., J.P. and Z.M.) acknowledge support by the NSF under grant DMR-1205469. The Vienna Scientific Cluster is gratefully acknowledged for providing computing time. The authors thank B. Yildiz for useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

D.H., B.S. and M.S. performed the STM experiments and data analysis. D.H., J.Pavelec and G.S.P. performed the XPS measurements. W.M.-S., F.M. and J.R. performed the DFT calculations. D.F., J.Peng and Z.M. grew the sample. U.D. directed and supervised the project. B.S., D.H., F.M., M.S., G.S.P. and U.D. wrote the manuscript.

Corresponding author

Correspondence to Ulrike Diebold.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1170 kb)

Supplementary Information

Supplementary Image 1 (GIF 3426 kb)

Supplementary Information

Supplementary Image 2 (GIF 5677 kb)

Supplementary Information

Supplementary Image 3 (GIF 6417 kb)

Supplementary Information

Supplementary Image 4 (GIF 2911 kb)

Supplementary Information

Supplementary Image 5 (GIF 5121 kb)

Supplementary Information

Supplementary Image 6 (GIF 3567 kb)

Supplementary Information

Supplementary Image 7 (GIF 1196 kb)

Supplementary Information

Supplementary Image 8 (GIF 2130 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halwidl, D., Stöger, B., Mayr-Schmölzer, W. et al. Adsorption of water at the SrO surface of ruthenates. Nature Mater 15, 450–455 (2016). https://doi.org/10.1038/nmat4512

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4512

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing