Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Metal–insulator transition in films of doped semiconductor nanocrystals

Abstract

To fully deploy the potential of semiconductor nanocrystal films as low-cost electronic materials, a better understanding of the amount of dopants required to make their conductivity metallic is needed. In bulk semiconductors, the critical concentration of electrons at the metal–insulator transition is described by the Mott criterion. Here, we theoretically derive the critical concentration nc for films of heavily doped nanocrystals devoid of ligands at their surface and in direct contact with each other. In the accompanying experiments, we investigate the conduction mechanism in films of phosphorus-doped, ligand-free silicon nanocrystals. At the largest electron concentration achieved in our samples, which is half the predicted nc, we find that the localization length of hopping electrons is close to three times the nanocrystals diameter, indicating that the film approaches the metal–insulator transition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The origin of the metal-to-insulator transition in semiconductor nanocrystal films.
Figure 2: Determining the free carrier density from the localized surface plasmon resonance.
Figure 3: Electrical transport in phosphorous-doped Si NC films approaching the metal-to-insulator transition.

Similar content being viewed by others

References

  1. Gur, I., Fromer, N. A., Geier, M. L. & Alivisatos, A. P. Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310, 462–465 (2005).

    Article  CAS  Google Scholar 

  2. Wood, V. & Bulovic, V. Colloidal quantum dot light-emitting devices. Nano Rev. 1, 1–7 (2010).

    Article  Google Scholar 

  3. Turk, M. E. et al. Gate-induced carrier delocalization in quantum dot field effect transistors. Nano Lett. 14, 5948–5952 (2014).

    Article  CAS  Google Scholar 

  4. Gresback, R. et al. Controlled doping of silicon nanocrystals investigated by solution-processed field effect transistors. ACS Nano 8, 5650–5656 (2014).

    Article  CAS  Google Scholar 

  5. Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996).

    Article  CAS  Google Scholar 

  6. Sargent, E. H. Infrared photovoltaics made by solution processing. Nature Photon. 3, 325–331 (2009).

    Article  CAS  Google Scholar 

  7. Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

    Article  CAS  Google Scholar 

  8. Talapin, D. V. & Murray, C. B. PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors. Science 310, 86–89 (2005).

    Article  CAS  Google Scholar 

  9. Yu, D., Wang, C. & Guyot-Sionnest, P. n-type conducting CdSe nanocrystal solids. Science 300, 1277–1280 (2003).

    Article  CAS  Google Scholar 

  10. Wang, C., Shim, M. & Guyot-Sionnest, P. Electrochromic nanocrystal quantum dots. Science 291, 2390–2392 (2001).

    Article  CAS  Google Scholar 

  11. Oh, S. J. et al. Stoichiometric control of lead chalcogenide nanocrystal solids to enhance their electronic and optoelectronic device performance. ACS Nano 7, 2413–2421 (2013).

    Article  CAS  Google Scholar 

  12. Norris, D. J., Efros, A. L. & Erwin, S. C. Doped nanocrystals. Science 319, 1776–1779 (2008).

    Article  CAS  Google Scholar 

  13. Mocatta, D. et al. Heavily doped semiconductor nanocrystal quantum dots. Science 332, 77–81 (2011).

    Article  CAS  Google Scholar 

  14. Sahu, A. et al. Electronic impurity doping in CdSe nanocrystals. Nano Lett. 12, 2587–2594 (2012).

    Article  CAS  Google Scholar 

  15. Guyot-Sionnest, P. Electrical transport in colloidal quantum dot films. J. Phys. Chem. Lett. 3, 1169–1175 (2012).

    Article  CAS  Google Scholar 

  16. Shabaev, A., Efros, A. L. & Efros, A. L. Dark and photo-conductivity in ordered array of nanocrystals. Nano Lett. 13, 5454–5461 (2013).

    Article  CAS  Google Scholar 

  17. Scheele, M. To be or not to be: Band-like transport in quantum dot solids. Z. Phys. Chem. 229, 167–178 (2015).

    CAS  Google Scholar 

  18. Mott, N. F. Metal–insulator transition. Rev. Mod. Phys. 40, 677–683 (1968).

    Article  CAS  Google Scholar 

  19. Sharvin, Y. V. A possible method for studying Fermi surfaces. Sov. J. Exp. Theor. Phys. 21, 655–656 (1965).

    Google Scholar 

  20. Nikolić, B. & Allen, P. B. Electron transport through a circular constriction. Phys. Rev. B 60, 3963–3969 (1999).

    Article  Google Scholar 

  21. Nazarov, Y. & Blanter, Y. Quantum Transport: Introduction to Nanoscience (Cambridge Univ. Press, 2009).

    Book  Google Scholar 

  22. Matveev, K. A. Coulomb blockade at almost perfect transmission. Phys. Rev. B 51, 1743–1751 (1995).

    Article  CAS  Google Scholar 

  23. Beloborodov, I. S., Lopatin, A. V., Vinokur, V. M. & Efetov, K. B. Granular electronic systems. Rev. Mod. Phys. 79, 469–518 (2007).

    Article  CAS  Google Scholar 

  24. Liljeroth, P. et al. Variable orbital coupling in a two-dimensional quantum-dot solid probed on a local scale. Phys. Rev. Lett. 97, 096803 (2006).

    Article  Google Scholar 

  25. Lee, J.-S., Kovalenko, M. V., Huang, J., Chung, D. S. & Talapin, D. V. Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. Nature Nanotech. 6, 348–352 (2011).

    Article  CAS  Google Scholar 

  26. Choi, J.-H. et al. Bandlike transport in strongly coupled and doped quantum dot solids: A route to high-performance thin-film electronics. Nano Lett. 12, 2631–2638 (2012).

    Article  CAS  Google Scholar 

  27. Liu, W., Lee, J.-S. & Talapin, D. V. III–V nanocrystals capped with molecular metal chalcogenide ligands: High electron mobility and ambipolar photoresponse. J. Am. Chem. Soc. 135, 1349–1357 (2013).

    Article  CAS  Google Scholar 

  28. Skinner, B., Chen, T. & Shklovskii, B. I. Theory of hopping conduction in arrays of doped semiconductor nanocrystals. Phys. Rev. B 85, 205316 (2012).

    Article  Google Scholar 

  29. Mangolini, L., Thimsen, E. & Kortshagen, U. High-yield plasma synthesis of luminescent silicon nanocrystals. Nano Lett. 5, 655–659 (2005).

    Article  CAS  Google Scholar 

  30. Rowe, D. J., Jeong, J. S., Mkhoyan, K. A. & Kortshagen, U. R. Phosphorus-doped silicon nanocrystals exhibiting mid-infrared localized surface plasmon resonance. Nano Lett. 13, 1317–1322 (2013).

    Article  CAS  Google Scholar 

  31. Zabrodskii, A. G. The Coulomb gap: The view of an experimenter. Philos. Mag. B 81, 1131–1151 (2001).

    Article  CAS  Google Scholar 

  32. Maxwell, J. C. A Treatise on Electricity and Magnetism Vol. 1 (Clarendon Press, 1881).

    Google Scholar 

  33. Marra, D. C., Edelberg, E. A., Naone, R. L. & Aydil, E. S. Silicon hydride composition of plasma-deposited hydrogenated amorphous and nanocrystalline silicon films and surfaces. J. Vac. Sci. Technol. A 16, 3199–3210 (1998).

    Article  CAS  Google Scholar 

  34. Miura, T., Niwano, M., Shoji, D. & Miyamoto, N. Kinetics of oxidation on hydrogenterminated si(100) and (111) surfaces stored in air. J. Appl. Phys. 79, 4373–4380 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank K. A. Matveev, C. Leighton, B. Skinner and A. Kamenev for helpful discussions, C. D. Frisbie for the use of his equipment and R. Knurr for assistance with the ICP-OES analysis. T.C. (electrical transport studies) and K.V.R.(theory) were supported primarily by the National Science Foundation through the University of Minnesota MRSEC under Award Number DMR-1420013. N.J.K. (materials synthesis) was supported by the DOE Center for Advanced Solar Photophysics (CASP), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. Part of this work was carried out in the College of Science and Engineering Characterization Facility, University of Minnesota, which has received capital equipment funding from the NSF through the UMN MRSEC Program. Part of this work also used the College of Science and Engineering Nanofabrication Center, University of Minnesota, which receives partial support from NSF through the NNIN Program.

Author information

Authors and Affiliations

Authors

Contributions

K.V.R., H.F. and B.I.S. created the theory. T.C. performed the structural and electrical characterization. N.J.K. synthesized materials. U.R.K. discussed and supervised the work. All authors participated in the discussion and interpretation of the results and co-wrote the manuscript.

Corresponding author

Correspondence to B. I. Shklovskii.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 597 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Reich, K., Kramer, N. et al. Metal–insulator transition in films of doped semiconductor nanocrystals. Nature Mater 15, 299–303 (2016). https://doi.org/10.1038/nmat4486

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4486

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing