Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Design of active and stable Co–Mo–Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction

Subjects

Abstract

Three of the fundamental catalytic limitations that have plagued the electrochemical production of hydrogen for decades still remain: low efficiency, short lifetime of catalysts and a lack of low-cost materials. Here, we address these three challenges by establishing and exploring an intimate functional link between the reactivity and stability of crystalline (CoS2 and MoS2) and amorphous (CoSx and MoSx) hydrogen evolution catalysts. We propose that Co2+ and Mo4+ centres promote the initial discharge of water (alkaline solutions) or hydronium ions (acid solutions). We establish that although CoSx materials are more active than MoSx they are also less stable, suggesting that the active sites are defects formed after dissolution of Co and Mo cations. By combining the higher activity of CoSx building blocks with the higher stability of MoSx units into a compact and robust CoMoSx chalcogel structure, we are able to design a low-cost alternative to noble metal catalysts for efficient electrocatalytic production of hydrogen in both alkaline and acidic environments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of Sadδ on the HER and the structure of double layer.
Figure 2: Ex situ materials characterization of as-synthesized TMSx chalcogels.
Figure 3: In situ characterization of TMSx and trends in activity for the HER on TMSx reveal that CoMoSx is a pH-universal catalyst.
Figure 4: Activity–stability relationship of TMSx for the HER in acid and alkaline environments.

Similar content being viewed by others

References

  1. Markovic, N. M. Electrocatalysis: Interfacing electrochemistry. Nature Mater. 12, 101–102 (2013).

    Article  CAS  Google Scholar 

  2. Dresselhaus, M. S. & Thomas, I. L. Alternative energy technologies. Nature 414, 332–337 (2001).

    Article  CAS  Google Scholar 

  3. Gratzel, M. Photoelectrochemical cells. Nature 414, 338–344 (2001).

    Article  CAS  Google Scholar 

  4. Schlapbach, L., Zuttel, A. & Züttel, A. Hydrogen-storage materials for mobile applications. Nature 414, 353–358 (2001).

    Article  CAS  Google Scholar 

  5. Gasteiger, H. A. & Marković, N. M. Just a dream—or future reality? Science 324, 48–49 (2009).

    Article  CAS  Google Scholar 

  6. Chung, I., Lee, B., He, J., Chang, R. P. H. & Kanatzidis, M. G. All-solid-state dye-sensitized solar cells with high efficiency. Nature 485, 486–489 (2012).

    Article  CAS  Google Scholar 

  7. Kinoshita, K. Electrochemical Oxygen Technology (John Wiley, 1992).

    Google Scholar 

  8. Gandía, L. M., Oroz, R., Ursúa, A., Sanchis, P. & Diéguez, P. M. Renewable hydrogen production: Performance of an alkaline water electrolyzer working under emulated wind conditions. Energy Fuels 21, 1699–1706 (2007).

    Article  Google Scholar 

  9. Subbaraman, R. et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li+–Ni(OH)2–Pt interfaces. Science 334, 1256–1260 (2011).

    Article  CAS  Google Scholar 

  10. Subbaraman, R. et al. Trends in activity for the water electrolyser reactions on 3d M(Ni, Co, Fe, Mn) hydr(oxy)oxide catalysts. Nature Mater. 11, 550–557 (2012).

    Article  CAS  Google Scholar 

  11. Moorhouse, J. Modern Chlor-Alkali Technology (Wiley, 2001).

    Book  Google Scholar 

  12. Birry, L. & Lasia, A. Studies of the hydrogen evolution reaction on Raney nickel–molybdenum electrodes. J. Appl. Electrochem. 34, 735–749 (2004).

    Article  CAS  Google Scholar 

  13. Lasia, A. & Rami, A. Kinetics of hydrogen evolution on nickel electrodes. J. Electroanal. Chem. Interfacial Electrochem. 294, 123–141 (1990).

    Article  CAS  Google Scholar 

  14. Miousse, D. & Lasia, A. Hydrogen evolution reaction on RuO2 electrodes in alkaline solutions. J. New Mater. 2, 71–78 (1999).

    CAS  Google Scholar 

  15. Los, P., Rami, A. & Lasia, A. Hydrogen evolution reaction on Ni–Al electrodes. J. Appl. Electrochem. 23, 135–140 (1993).

    Article  CAS  Google Scholar 

  16. Jaksic, M. M. Advances in electrocatalysis for hydrogen evolution in the light of the Brewer–Engel valence-bond theory. Int. J. Hydrog. Energy 12, 727–752 (1987).

    Article  CAS  Google Scholar 

  17. Han, Q., Liu, K., Chen, J. & Wei, X. Hydrogen evolution reaction on amorphous Ni–S–Co alloy in alkaline medium. Int. J. Hydrog. Energy 28, 1345–1352 (2003).

    Article  CAS  Google Scholar 

  18. Greeley, J. et al. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nature Mater. 5, 909–913 (2006).

    Article  CAS  Google Scholar 

  19. Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007).

    Article  CAS  Google Scholar 

  20. Kibsgaard, J., Jaramillo, T. F. & Besenbacher, F. Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2− clusters. Nature Chem. 6, 248–253 (2014).

    Article  CAS  Google Scholar 

  21. Kibsgaard, J., Chen, Z., Reinecke, B. N. & Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nature Mater. 11, 963–969 (2012).

    Article  CAS  Google Scholar 

  22. Faber, M. S., Lukowski, M. A., Ding, Q., Kaiser, N. S. & Jin, S. Earth-abundant metal pyrites (FeS2, CoS2, NiS2, and their alloys) for highly efficient hydrogen evolution and polysulfide reduction electrocatalysis. J. Phys. Chem. C 118, 21347–21356 (2014).

    Article  CAS  Google Scholar 

  23. Faber, M. S. et al. High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. J. Am. Chem. Soc. 136, 10053–10061 (2014).

    Article  CAS  Google Scholar 

  24. Lukowski, M. A. et al. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 135, 10274–10277 (2013).

    Article  CAS  Google Scholar 

  25. Lauritsen, J. et al. Atomic-scale structure of Co–Mo–S nanoclusters in hydrotreating catalysts. J. Catalys. 197, 1–5 (2001).

    Article  CAS  Google Scholar 

  26. Lauritsen, J. V. et al. Location and coordination of promoter atoms in Co- and Ni-promoted MoS2-based hydrotreating catalysts. J. Catalys. 249, 220–233 (2007).

    Article  CAS  Google Scholar 

  27. Topsøe, H. The role of Co–Mo–S type structures in hydrotreating catalysts. Appl. Catalys. A 322, 3–8 (2007).

    Article  Google Scholar 

  28. Kibsgaard, J. et al. Comparative atomic-scale analysis of promotional effects by late 3d-transition metals in MoS2 hydrotreating catalysts. J. Catalys. 272, 195–203 (2010).

    Article  CAS  Google Scholar 

  29. Bag, S. et al. Porous semiconducting gels and aerogels from chalcogenide clusters. Science 317, 490–493 (2007).

    Article  CAS  Google Scholar 

  30. Bag, S., Gaudette, A. F., Bussell, M. E. & Kanatzidis, M. G. Spongy chalcogels of non-platinum metals act as effective hydrodesulfurization catalysts. Nature Chem. 1, 217–224 (2009).

    Article  CAS  Google Scholar 

  31. Hinnemann, B. et al. Biomimetic hydrogen evolution? MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 127, 5308–5309 (2005).

    Article  CAS  Google Scholar 

  32. Raybaud, P., Hafner, J., Kresse, G., Kasztelan, S. & Toulhoat, H. Ab initio study of the H2–H2S/MoS2 gas–solid interface: The nature of the catalytically active sites. J. Catalys. 189, 129–146 (2000).

    Article  CAS  Google Scholar 

  33. Huang, Y., Nielsen, R. J., Goddard, W. A. & Soriaga, M. P. The reaction mechanism with free energy barriers for electrochemical dihydrogen evolution on MoS2 . J. Am. Chem. Soc. 137, 6692–6698 (2015).

    Article  CAS  Google Scholar 

  34. Lay, M. D., Varazo, K. & Stickney, J. L. Formation of sulfur atomic layers on gold from aqueous solutions of sulfide and thiosulfate? Studies using EC-STM, UHV-EC, and TLEC. Langmuir 19, 8416–8427 (2003).

    Article  CAS  Google Scholar 

  35. Strmcnik, D. et al. The role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinum. Nature Chem. 1, 466–472 (2009).

    Article  CAS  Google Scholar 

  36. Strmcnik, D. et al. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nature Chem. 5, 300–306 (2013).

    Article  CAS  Google Scholar 

  37. Marković, N. M. & Ross, P. N. Jr. Surface science studies of model fuel cell electrocatalysts. Surf. Sci. Rep. 45, 117–229 (2002).

    Article  Google Scholar 

  38. Tong, Y. J. Unconventional promoters of catalytic activity in electrocatalysis. Chem. Soc. Rev. 41, 8195–8209 (2012).

    Article  CAS  Google Scholar 

  39. Strmcnik, D. et al. Effects of Li+, K+, and Ba2+ cations on the ORR at model and high surface area Pt and Au surfaces in alkaline solutions. J. Phys. Chem. Lett. 2, 2733–2736 (2011).

    Article  CAS  Google Scholar 

  40. Jirkovsky, J. S., Björling, A. & Ahlberg, E. Reduction of oxygen on dispersed nanocrystalline CoS2 . J. Phys. Chem. C 116, 24436–24444 (2012).

    Article  CAS  Google Scholar 

  41. Weber, T., Muijsers, J. C. & Niemantsverdriet, J. W. Structure of amorphous MoS3 . J. Phys. Chem. 99, 9194–9200 (1995).

    Article  CAS  Google Scholar 

  42. Shafaei-Fallah, M. et al. Ion-exchangeable cobalt polysulfide chalcogel. J. Am. Chem. Soc. 133, 1200–1202 (2011).

    Article  CAS  Google Scholar 

  43. Islam, S. M. et al. One-dimensional molybdenum thiochlorides and their use in high surface area MoSx chalcogels. Chem. Mater. 26, 5151–5160 (2014).

    Article  CAS  Google Scholar 

  44. Subrahmanyam, K. S. et al. Ion-exchangeable molybdenum sulfide porous chalcogel: Gas adsorption and capture of iodine and mercury. J. Am. Chem. Soc. 137, 13943–13948 (2015).

    Article  CAS  Google Scholar 

  45. Boudart, M. Turnover rates in heterogeneous catalysis. Chem. Rev. 95, 661–666 (1995).

    Article  CAS  Google Scholar 

  46. Trasatti, S. Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions. J. Electroanal. Chem. Interfacial Electrochem. 39, 163–184 (1972).

    Article  CAS  Google Scholar 

  47. Danilovic, N. et al. Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts. Angew. Chem. Int. Ed. 51, 12495–12498 (2012).

    Article  CAS  Google Scholar 

  48. Strmcnik, D. S. et al. Unique activity of platinum adislands in the CO electrooxidation reaction. J. Am. Chem. Soc. 130, 15332–15339 (2008).

    Article  CAS  Google Scholar 

  49. Danilovic, N. et al. Activity–stability trends for the oxygen evolution reaction on monometallic oxides in acidic environments. J. Phys. Chem. Lett. 5, 2474–2478 (2014).

    Article  CAS  Google Scholar 

  50. Chang, S. H. et al. Functional links between stability and reactivity of strontium ruthenate single crystals during oxygen evolution. Nature Commun. 5, 4191 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences, US Department of Energy, under contract DE-AC02-06CH11357 (BES-DMSE). This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Contributions

J.S.-J., C.D.M., M.G.K. and N.M.M. developed the idea and designed the experiments. J.S.-J., P.P.L. and N.D. performed the electrochemical experiments. S.S.K. synthesized the materials, C.D.M., S.S.K. and J.S.-J. characterized the materials. N.D., J.S.-J. and K.-C.C. performed the in situ experiments. J.S.-J., P.P.L., N.D., B.G., D.S., V.R.S. and N.M.M. analysed and discussed electrochemical results. J.S.-J., C.D.M., M.G.K. and N.M.M. co-wrote the paper. J.S.-J. and C.D.M. have contributed equally to this work.

Corresponding authors

Correspondence to Mercouri G. Kanatzidis or Nenad M. Markovic.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1255 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Staszak-Jirkovský, J., Malliakas, C., Lopes, P. et al. Design of active and stable Co–Mo–Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction. Nature Mater 15, 197–203 (2016). https://doi.org/10.1038/nmat4481

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4481

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing