Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hydride formation thermodynamics and hysteresis in individual Pd nanocrystals with different size and shape

Abstract

Physicochemical properties of nanoparticles may depend on their size and shape and are traditionally assessed in ensemble-level experiments, which accordingly may be plagued by averaging effects. These effects can be eliminated in single-nanoparticle experiments. Using plasmonic nanospectroscopy, we present a comprehensive study of hydride formation thermodynamics in individual Pd nanocrystals of different size and shape, and find corresponding enthalpies and entropies to be nearly size- and shape-independent. The hysteresis observed is significantly wider than in bulk, with details depending on the specifics of individual nanoparticles. Generally, the absorption branch of the hysteresis loop is size-dependent in the sub-30 nm regime, whereas desorption is size- and shape-independent. The former is consistent with a coherent phase transition during hydride formation, influenced kinetically by the specifics of nucleation, whereas the latter implies that hydride decomposition either occurs incoherently or via different kinetic pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Heterodimer arrangement of a plasmonic Au nanoantenna combined with a shape-selected Pd nanoparticle.
Figure 2: Experimental procedure and theoretical FDTD simulations.
Figure 3: p–Δλmax isotherms measured at four temperatures for Pd nanocubes.
Figure 4: Van’t Hoff analysis.
Figure 5: pλmax isotherms measured at four temperatures for Pd nanoparticles of different shape.
Figure 6: Summary of the size and shape dependence of hydride formation thermodynamics and hysteresis.

Similar content being viewed by others

References

  1. Schlapbach, L. & Zuttel, A. Hydrogen-storage materials for mobile applications. Nature 414, 353–358 (2001).

    Article  CAS  Google Scholar 

  2. Felderhoff, M. & Bogdanović, B. High temperature metal hydrides as heat storage materials for solar and related applications. Int. J. Mol. Sci. 10, 325–344 (2009).

    Article  CAS  Google Scholar 

  3. Oumellal, Y., Rougier, A., Nazri, G. A., Tarascon, J. M. & Aymard, L. Metal hydrides for lithium-ion batteries. Nature Mater. 7, 916–921 (2008).

    Article  CAS  Google Scholar 

  4. Wadell, C., Syrenova, S. & Langhammer, C. Plasmonic hydrogen sensing with nanostructured metal hydrides. ACS Nano 8, 11925–11940 (2014).

    Article  CAS  Google Scholar 

  5. Yoshimura, K., Langhammer, C. & Dam, B. Metal hydrides for smart window and sensor applications. MRS Bull. 38, 495–503 (2013).

    Article  CAS  Google Scholar 

  6. Huiberts, J. N. et al. Yttrium and lanthanum hydride films with switchable optical properties. Nature 380, 231–234 (1996).

    Article  CAS  Google Scholar 

  7. Manchester, F. D., San-Martin, A. & Pitre, J. M. The H–Pd (hydrogen–palladium) system. J. Phase Equilib. 15, 62–83 (1994).

    Article  CAS  Google Scholar 

  8. Behm, R. J., Penka, V., Cattania, M. G., Christmann, K. & Ertl, G. Evidence for “subsurface” hydrogen on Pd(110): An intermediate between chemisorbed and dissolved species. J. Chem. Phys. 78, 7486–7490 (1983).

    Article  CAS  Google Scholar 

  9. Schwarz, R. B. & Khachaturyan, A. G. Thermodynamics of open two-phase systems with coherent interfaces: Application to metal–hydrogen systems. Acta Mater. 54, 313–323 (2006).

    Article  CAS  Google Scholar 

  10. Silkin, V. M., Diez Muino, R., Chernov, I. P., Chulkov, E. V. & Echenique, P. M. Tuning the plasmon energy of palladium–hydrogen systems by varying the hydrogen concentration. J. Phys. Condens. Matter 24, 104021 (2012).

    Article  CAS  Google Scholar 

  11. Bérubé, V., Radtke, G., Dresselhaus, M. & Chen, G. Size effects on the hydrogen storage properties of nanostructured metal hydrides: A review. Int. J. Energ. Res. 31, 637–663 (2007).

    Article  Google Scholar 

  12. Pundt, A. Hydrogen in nano-sized metals. Adv. Eng. Mater. 6, 11–21 (2004).

    Article  CAS  Google Scholar 

  13. Narehood, D. G. et al. X-ray diffraction and H-storage in ultra-small palladium particles. Int. J. Hydrog. Energ. 34, 952–960 (2009).

    Article  CAS  Google Scholar 

  14. Yamauchi, M., Ikeda, R., Kitagawa, H. & Takata, M. Nanosize effects on hydrogen storage in palladium. J. Phys. Chem. C 112, 3294–3299 (2008).

    Article  CAS  Google Scholar 

  15. Pundt, A. et al. Hydrogen sorption in elastically soft stabilized Pd-clusters. J. Alloy Compd. 293–295, 480–483 (1999).

    Article  Google Scholar 

  16. Sachs, C. et al. Solubility of hydrogen in single-sized palladium clusters. Phys. Rev. B 64, 075408 (2001).

    Article  Google Scholar 

  17. Pundt, A. et al. Hydrogen and Pd-clusters. Mater. Sci. Eng. B 108, 19–23 (2004).

    Article  Google Scholar 

  18. Langhammer, C., Zhdanov, V. P., Zorić, I. & Kasemo, B. Size-dependent hysteresis in the formation and decomposition of hydride in metal nanoparticles. Chem. Phys. Lett. 488, 62–66 (2010).

    Article  CAS  Google Scholar 

  19. Wadell, C. et al. Thermodynamics of hydride formation and decomposition in supported sub-10 nm Pd nanoparticles of different sizes. Chem. Phys. Lett. 603, 75–81 (2014).

    Article  CAS  Google Scholar 

  20. Salomons, E., Griessen, R., De Groot, D. G. & Magerl, A. Surface-tension and subsurface sites of metallic nanocrystals determined from H-absorption. Europhys. Lett. 5, 449–454 (1988).

    Article  CAS  Google Scholar 

  21. Suleiman, M. et al. Hydrogen absorption behaviour in nanometer sized palladium samples stabilised in soft and hard matrix. J. Alloys Compd. 404–406, 523–528 (2005).

    Article  Google Scholar 

  22. Liu, N., Tang, M. L., Hentschel, M., Giessen, H. & Alivisatos, A. P. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nature Mater. 10, 631–636 (2011).

    Article  CAS  Google Scholar 

  23. Shegai, T. & Langhammer, C. Hydride formation in single palladium and magnesium nanoparticles studied by nanoplasmonic dark-field scattering spectroscopy. Adv. Mater. 23, 4409–4414 (2011).

    Article  CAS  Google Scholar 

  24. Tang, M. L., Liu, N., Dionne, J. A. & Alivisatos, A. P. Observations of shape-dependent hydrogen uptake trajectories from single nanocrystals. J. Am. Chem. Soc. 133, 13220–13223 (2011).

    Article  CAS  Google Scholar 

  25. Gu, F., Zeng, H., Tong, L. & Zhuang, S. Metal single-nanowire plasmonic sensors. Opt. Lett. 38, 1826–1828 (2013).

    Article  CAS  Google Scholar 

  26. Baldi, A., Narayan, T. C., Koh, A. L. & Dionne, J. A. In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals. Nature Mater. 13, 1143–1148 (2014).

    Article  CAS  Google Scholar 

  27. Bardhan, R. et al. Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals. Nature Mater. 12, 905–912 (2013).

    Article  CAS  Google Scholar 

  28. Gschneidtner, T. A. et al. A versatile self-assembly strategy for the synthesis of shape-selected colloidal noble metal nanoparticle heterodimers. Langmuir 30, 3041–3050 (2014).

    Article  CAS  Google Scholar 

  29. Ameen Poyli, M. et al. Multiscale theoretical modeling of plasmonic sensing of hydrogen uptake in palladium nanodisks. J. Phys. Chem. Lett. 3, 2556–2561 (2012).

    Article  Google Scholar 

  30. Langhammer, C., Larsson, E. M., Kasemo, B. & Zorić, I. Indirect nanoplasmonic sensing: Ultrasensitive experimental platform for nanomaterials science and optical nanocalorimetry. Nano Lett. 10, 3529–3538 (2010).

    Article  CAS  Google Scholar 

  31. Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles (Wiley, 1983).

    Google Scholar 

  32. Tittl, A., Kremers, C., Dorfmueller, J., Chigrin, D. N. & Giessen, H. Spectral shifts in optical nanoantenna-enhanced hydrogen sensors. Opt. Mater. Express 2, 111–118 (2012).

    Article  CAS  Google Scholar 

  33. Langhammer, C., Kasemo, B. & Zorić, I. Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: Absolute cross sections and branching ratios. J. Chem. Phys. 126, 194702 (2007).

    Article  Google Scholar 

  34. Griessen, R. & Riesterer, T. in Hydrogen in Intermetallic Compounds I: Electronic, Thermodynamic, and Crystallographic Properties, Preparation; Topics in Applied Physics Vol. 63 (ed. Schlapbach, L.) 219–284 (Springer, 1988).

    Book  Google Scholar 

  35. Niu, W., Zhang, L. & Xu, G. Shape-controlled synthesis of single-crystalline palladium nanocrystals. ACS Nano 4, 1987–1996 (2010).

    Article  CAS  Google Scholar 

  36. Lässer, R. & Klatt, K. Solubility of hydrogen isotopes in palladium. Phys. Rev. B 28, 748–758 (1983).

    Article  Google Scholar 

  37. Gremaud, R., Slaman, M., Schreuders, H., Dam, B. & Griessen, R. An optical method to determine the thermodynamics of hydrogen absorption and desorption in metals. Appl. Phys. Lett. 91, 231916 (2007).

    Article  Google Scholar 

  38. Sharp, K. Entropy–enthalpy compensation: Fact or artifact? Protein Sci. 10, 661–667 (2001).

    Article  CAS  Google Scholar 

  39. Zorić, I., Larsson, E. M., Kasemo, B. & Langhammer, C. Localized surface plasmons shed light on nanoscale metal hydrides. Adv. Mater. 22, 4628–4633 (2010).

    Article  Google Scholar 

  40. Fischer, F. D., Waitz, T., Vollath, D. & Simha, N. K. On the role of surface energy and surface stress in phase-transforming nanoparticles. Prog. Mater. Sci. 53, 481–527 (2008).

    Article  CAS  Google Scholar 

  41. Schwarz, R. B. & Khachaturyan, A. G. Thermodynamics of open two-phase systems with coherent interfaces. Phys. Rev. Lett. 74, 2523–2526 (1995).

    Article  CAS  Google Scholar 

  42. Ingham, B. et al. Particle size effect of hydrogen-induced lattice expansion of palladium nanoclusters. Phys. Rev. B 78, 245408 (2008).

    Article  Google Scholar 

  43. Gdowski, G. E., Felter, T. E. & Stulen, R. H. Effect of surface temperature on the sorption of hydrogen by Pd(111). Surf. Sci. 181, L147–L155 (1987).

    Article  CAS  Google Scholar 

  44. Okuyama, H., Siga, W., Takagi, N., Nishijima, M. & Aruga, T. Path and mechanism of hydrogen absorption at Pd(100). Surf. Sci. 401, 344–354 (1998).

    Article  CAS  Google Scholar 

  45. Wicke, E. & Blaurock, J. New experiments on and interpretations of hysteresis effects of Pd–D2 and Pd–H2 . J. Less-Common Met. 130, 351–363 (1987).

    Article  CAS  Google Scholar 

  46. Langhammer, C., Zhdanov, V. P., Zorić, I. & Kasemo, B. Size-dependent kinetics of hydriding and dehydriding of Pd nanoparticles. Phys. Rev. Lett. 104, 135502 (2010).

    Article  Google Scholar 

  47. Chen, W. C. & Heuser, B. J. Solubility and kinetic properties of deuterium in single crystal Pd. J. Alloys Compd. 312, 176–180 (2000).

    Article  CAS  Google Scholar 

  48. Zhdanov, V. P., Zorić, I. & Kasemo, B. Plasmonics: Heat transfer between metal nanoparticles and supporting nanolayers. Physica E 46, 113–118 (2012).

    Article  CAS  Google Scholar 

  49. Palik, E. D. Handbook of Optical Constants of Solids Vol. 1 (Academic Press, 1985).

    Google Scholar 

  50. Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the Swedish Research Council (C.L.), the Chalmers Areas of Advance Nano (S.S., C.L., Y.A.D.F., K.M.-P., F.W.) and Materials Science (K.M.-P.), the Swedish Foundation for Strategic Research Framework Program RMA11–0037 (C.W., F.A.A.N., C.L.), the Polish National Science Center via the project 2012/07/D/ST3/02152 (D.Ś. and T.J.A.) and the ERC-StG 337221 ‘SIMONE’ (K.M.-P.). We gratefully acknowledge S. Gustafsson for help with high-resolution TEM imaging of the Pd nanorods. C.L. and S.S. acknowledge valuable discussions with R. Griessen and I. Zorić.

Author information

Authors and Affiliations

Authors

Contributions

S.S. and C.L. planned the experiments, analysed the data, and wrote the paper. S.S. performed the single-particle measurements. C.W. and F.A.A.N. executed the ensemble measurements and XPS analysis. T.A.G., Y.A.D.F., G.N., F.W. and K.M.-P. synthesized and self-assembled the nanoparticle heterodimers. T.J.A. and D.Ś. performed the FDTD simulations. V.P.Z. contributed the theoretical analysis of lattice strain and dislocation formation. C.L. conceived the general approach and coordinated the project.

Corresponding author

Correspondence to Christoph Langhammer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3264 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syrenova, S., Wadell, C., Nugroho, F. et al. Hydride formation thermodynamics and hysteresis in individual Pd nanocrystals with different size and shape. Nature Mater 14, 1236–1244 (2015). https://doi.org/10.1038/nmat4409

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4409

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing