Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultra-sparse metasurface for high reflection of low-frequency sound based on artificial Mie resonances

Abstract

Acoustic metamaterials offer great flexibility for manipulating sound waves and promise unprecedented functionality, ranging from transformation acoustics, super-resolution imaging to acoustic cloaking. However, the design of acoustic metamaterials with exciting functionality remains challenging with traditional approaches using classic acoustic elements such as Helmholtz resonators and membranes. Here we demonstrate an ultraslow-fluid-like particle with intense artificial Mie resonances for low-frequency airborne sound. Eigenstate analysis and effective parameter retrieval show two individual negative bands in the single-size unit cell, one of which exhibits a negative bulk modulus supported by the monopolar Mie resonance, whereas the other exhibits a negative mass density induced by the dipolar Mie resonance. The unique single-negative nature is used to develop an ultra-sparse subwavelength metasurface with high reflectance for low-frequency sound. We demonstrate a 0.15λ-thick, 15%-filling ratio metasurface with an insertion loss over 93.4%. The designed Mie resonators provide diverse routes to construct novel acoustic devices with versatile applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Geometry design and physical model of the unit cell for the metasurface.
Figure 2: Field distributions of acoustic Mie-resonance modes in air supported by the unit cell.
Figure 3: Experimental demonstration of basic Mie resonance.
Figure 4: Effective acoustic parameters obtained from a single-layer metasurface.
Figure 5: Comparison between an ultra-sparse thin metasurface sample and a rigid cylinder array of the same size and arrangement.
Figure 6: Sound shielding performance and its operation.

Similar content being viewed by others

References

  1. Fok, L., Ambati, M. & Zhang, X. Acoustic metamaterials. MRS Bull. 33, 931–934 (2008).

    CAS  Google Scholar 

  2. Liu, Z. Y. et al. Locally resonant sonic materials. Science 289, 1734–1736 (2000).

    CAS  Google Scholar 

  3. Garcia-Chocano, V. M., Christensen, J. & Sanchez-Dehesa, J. Negative refraction and energy funneling by hyperbolic materials: An experimental demonstration in acoustics. Phys. Rev. Lett. 112, 144301 (2014).

    Google Scholar 

  4. Sanchis, L. et al. Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere. Phys. Rev. Lett. 110, 124301 (2013).

    CAS  Google Scholar 

  5. Fang, N. et al. Ultrasonic metamaterials with negative modulus. Nature Mater. 5, 452–456 (2006).

    CAS  Google Scholar 

  6. Zhang, S., Xia, C. & Fang, N. Broadband acoustic cloak for ultrasound waves. Phys. Rev. Lett. 106, 024301 (2011).

    Google Scholar 

  7. Zhang, S., Yin, L. L. & Fang, N. Focusing ultrasound with an acoustic metamaterial network. Phys. Rev. Lett. 102, 194301 (2009).

    Google Scholar 

  8. Rupin, M., Lemoult, F., Lerosey, G. & Roux, P. Experimental demonstration of ordered and disordered multiresonant metamaterials for Lamb waves. Phys. Rev. Lett. 112, 234301 (2014).

    Google Scholar 

  9. Farhat, M., Guenneau, S. & Enoch, S. Ultrabroadband elastic cloaking in thin plates. Phys. Rev. Lett. 103, 024301 (2009).

    Google Scholar 

  10. Zhu, J. et al. A holey-structured metamaterial for acoustic deep-subwavelength imaging. Nature Phys. 7, 52–55 (2011).

    CAS  Google Scholar 

  11. Christensen, J. et al. Extraordinary absorption of sound in porous lamella-crystals. Sci. Rep. 4, 4674 (2014).

    CAS  Google Scholar 

  12. Liang, Z., Willatzen, M., Li, J. & Christensen, J. Tunable acoustic double negativity metamaterial. Sci. Rep. 2, 859 (2012).

    CAS  Google Scholar 

  13. Li, J. S., Fok, L., Yin, X. B., Bartal, G. & Zhang, X. Experimental demonstration of an acoustic magnifying hyperlens. Nature Mater. 8, 931–934 (2009).

    CAS  Google Scholar 

  14. Mei, J. et al. Dark acoustic metamaterials as super absorbers for low-frequency sound. Nature Commun. 3, 756 (2012).

    Google Scholar 

  15. Lee, S. H., Park, C. M., Seo, Y. M., Wang, Z. G. & Kim, C. K. Composite acoustic medium with simultaneously negative density and modulus. Phys. Rev. Lett. 104, 054301 (2010).

    Google Scholar 

  16. Park, C. M. et al. Amplification of acoustic evanescent waves using metamaterial slabs. Phys. Rev. Lett. 107, 194301 (2011).

    Google Scholar 

  17. Fleury, R. & Alu, A. Extraordinary sound transmission through density-near-zero ultranarrow channels. Phys. Rev. Lett. 111, 055501 (2013).

    Google Scholar 

  18. Fleury, R., Sounas, D. L., Sieck, C. F., Haberman, M. R. & Alu, A. Sound isolation and giant linear nonreciprocity in a compact acoustic circulator. Science 343, 516–519 (2014).

    CAS  Google Scholar 

  19. Farhat, M. et al. Platonic scattering cancellation for bending waves in a thin plate. Sci. Rep. 4, 4644 (2014).

    CAS  Google Scholar 

  20. Cheng, Y., Yang, F., Xu, J. Y. & Liu, X. J. A multilayer structured acoustic cloak with homogeneous isotropic materials. Appl. Phys. Lett. 92, 151913 (2008).

    Google Scholar 

  21. Cheng, Y., Xu, J. Y. & Liu, X. J. One-dimensional structured ultrasonic metamaterials with simultaneously negative dynamic density and modulus. Phys. Rev. B 77, 045134 (2008).

    Google Scholar 

  22. Cheng, Y., Zhou, C., Wei, Q., Wu, D. J. & Liu, X. J. Acoustic subwavelength imaging of subsurface objects with acoustic resonant metalens. Appl. Phys. Lett. 103, 224104 (2013).

    Google Scholar 

  23. Ma, G., Yang, M., Xiao, S., Yang, Z. & Sheng, P. Acoustic metasurface with hybrid resonances. Nature Mater. 13, 873–878 (2014).

    CAS  Google Scholar 

  24. Yang, M., Ma, G., Yang, Z. & Sheng, P. Coupled membranes with doubly negative mass density and bulk modulus. Phys. Rev. Lett. 110, 134301 (2013).

    Google Scholar 

  25. Yang, Z., Mei, J., Yang, M., Chan, N. H. & Sheng, P. Membrane-type acoustic metamaterial with negative dynamic mass. Phys. Rev. Lett. 101, 204301 (2008).

    CAS  Google Scholar 

  26. Lai, Y., Wu, Y., Sheng, P. & Zhang, Z. Q. Hybrid elastic solids. Nature Mater. 10, 620–624 (2011).

    CAS  Google Scholar 

  27. Zhao, Q., Zhou, J., Zhang, F. L. & Lippens, D. Mie resonance-based dielectric metamaterials. Mater. Today 12, 60–69 (2009).

    CAS  Google Scholar 

  28. Brongersma, M. L., Cui, Y. & Fan, S. H. Light management for photovoltaics using high-index nanostructures. Nature Mater. 13, 451–460 (2014).

    CAS  Google Scholar 

  29. Shi, L., Tuzer, T. U., Fenollosa, R. & Meseguer, F. A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: Silicon colloid nanocavities. Adv. Mater. 24, 5934–5938 (2012).

    CAS  Google Scholar 

  30. Liu, X. M., Zhao, Q., Lan, C. W. & Zhou, J. Isotropic Mie resonance-based metamaterial perfect absorber. Appl. Phys. Lett. 103, 031910 (2013).

    Google Scholar 

  31. Moitra, P., Slovick, B. A., Yu, Z. G., Krishnamurthy, S. & Valentine, J. Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector. Appl. Phys. Lett. 104, 171102 (2014).

    Google Scholar 

  32. Yahiaoui, R. et al. Towards left-handed metamaterials using single-size dielectric resonators: The case of TiO2-disks at millimeter wavelengths. Appl. Phys. Lett. 101, 042909 (2012).

    Google Scholar 

  33. Kallos, E., Chremmos, I. & Yannopapas, V. Resonance properties of optical all-dielectric metamaterials using two-dimensional multipole expansion. Phys. Rev. B 86, 245108 (2012).

    Google Scholar 

  34. Kang, L. & Lippens, D. Mie resonance based left-handed metamaterial in the visible frequency range. Phys. Rev. B 83, 195125 (2011).

    Google Scholar 

  35. Slovick, B., Yu, Z. G., Berding, M. & Krishnamurthy, S. Perfect dielectric-metamaterial reflector. Phys. Rev. B 88, 165116 (2013).

    Google Scholar 

  36. Zhang, F. L., Zhao, Q., Kang, L., Zhou, J. & Lippens, D. Experimental verification of isotropic and polarization properties of high permittivity-based metamaterial. Phys. Rev. B 80, 195119 (2009).

    Google Scholar 

  37. Ginn, J. C. et al. Realizing optical magnetism from dielectric metamaterials. Phys. Rev. Lett. 108, 097402 (2012).

    Google Scholar 

  38. Bretagne, A., Tourin, A. & Leroy, V. Enhanced and reduced transmission of acoustic waves with bubble meta-screens. Appl. Phys. Lett. 99, 221906 (2011).

    Google Scholar 

  39. Leroy, V. et al. Design and characterization of bubble phononic crystals. Appl. Phys. Lett. 95, 171904 (2009).

    Google Scholar 

  40. Liang, Z. X. & Li, J. S. Extreme acoustic metamaterial by coiling up space. Phys. Rev. Lett. 108, 114301 (2012).

    Google Scholar 

  41. Xie, Y. B., Popa, B. I., Zigoneanu, L. & Cummer, S. A. Measurement of a broadband negative index with space-coiling acoustic metamaterials. Phys. Rev. Lett. 110, 175501 (2013).

    Google Scholar 

  42. Liang, Z. X. et al. Space-coiling metamaterials with double negativity and conical dispersion. Sci. Rep. 3, 1614 (2013).

    CAS  Google Scholar 

  43. Xie, Y., Konneker, A., Popa, B.-I. & Cummer, S. A. Tapered labyrinthine acoustic metamaterials for broadband impedance matching. Appl. Phys. Lett. 103, 201906 (2013).

    Google Scholar 

  44. Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983).

    Google Scholar 

  45. Hu, X., Ho, K.-M., Chan, C. T. & Zi, J. Homogenization of acoustic metamaterials of Helmholtz resonators in fluid. Phys. Rev. B 77, 172301 (2008).

    Google Scholar 

  46. Zigoneanu, L., Popa, B. I., Starr, A. F. & Cummer, S. A. Design and measurements of a broadband two-dimensional acoustic metamaterial with anisotropic effective mass density. J. Appl. Phys. 109, 054906 (2011).

    Google Scholar 

  47. Ao, X. & Chan, C. T. Complex band structures and effective medium descriptions of periodic acoustic composite systems. Phys. Rev. B 80, 235118 (2009).

    Google Scholar 

  48. Zhang, F. L., Kang, L., Zhao, Q., Zhou, J. & Lippens, D. Magnetic and electric coupling effects of dielectric metamaterial. New J. Phys. 14, 033031 (2012).

    Google Scholar 

  49. Koschny, T. et al. Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials. Phys. Rev. B 71, 245105 (2005).

    Google Scholar 

  50. Yang, Z., Dai, H. M., Chan, N. H., Ma, G. C. & Sheng, P. Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime. Appl. Phys. Lett. 96, 041906 (2010).

    Google Scholar 

  51. Ma, G., Yang, M., Yang, Z. & Sheng, P. Low-frequency narrow-band acoustic filter with large orifice. Appl. Phys. Lett. 103, 011903 (2013).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (2012CB921504), NSFC (11274171 and 11474162), and SRFDP (20110091120040, 20120091110001 and 20130091130004).

Author information

Authors and Affiliations

Authors

Contributions

X.J.L. coordinated and supervised the project. Y.C. developed the device concept and design. Y.C., C.Z. and B.G.Y. constructed the theoretical simulations and experimental set-up. D.J.W. and Q.W. provided insight and interpretation of the Mie-resonance properties. Y.C. and X.J.L. analysed the data and wrote the manuscript.

Corresponding author

Correspondence to X. J. Liu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1798 kb)

Supplementary Information

Supplementary Movie 1 (GIF 10179 kb)

Supplementary Information

Supplementary Movie 2 (GIF 1226 kb)

Supplementary Information

Supplementary Movie 3 (GIF 1191 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Zhou, C., Yuan, B. et al. Ultra-sparse metasurface for high reflection of low-frequency sound based on artificial Mie resonances. Nature Mater 14, 1013–1019 (2015). https://doi.org/10.1038/nmat4393

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4393

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing