Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Negative-pressure-induced enhancement in a freestanding ferroelectric

Abstract

Ferroelectrics are widespread in technology1, being used in electronics and communications2, medical diagnostics and industrial automation. However, extension of their operational temperature range and useful properties is desired3,4,5. Recent developments have exploited ultrathin epitaxial films on lattice-mismatched substrates, imposing tensile or compressive biaxial strain, to enhance ferroelectric properties6,7. Much larger hydrostatic compression can be achieved by diamond anvil cells8,9, but hydrostatic tensile stress is regarded as unachievable. Theory and ab initio treatments10 predict enhanced properties for perovskite ferroelectrics under hydrostatic tensile stress. Here we report negative-pressure-driven enhancement of the tetragonality, Curie temperature and spontaneous polarization in freestanding PbTiO3 nanowires, driven by stress that develops during transformation of the material from a lower-density crystal structure to the perovskite phase. This study suggests a simple route to obtain negative pressure in other materials, potentially extending their exploitable properties beyond their present levels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystalline structure and microstructure of the PbTiO3 nanowires.
Figure 2: Curie temperature of single wires probed by Raman spectroscopy.
Figure 3: Temperature-dependent lattice parameters and tetragonality of the multiple-wire sample and predicted effect of hydrostatic tensile stress by LGD phenomenology and first-principles calculations.
Figure 4: Pore profile at different wire thicknesses and simulation of the hydrostatic pressure during the PX–perovskite phase transition.

Similar content being viewed by others

References

  1. Haertling, G. H. Ferroelectric ceramics: History and technology. J. Am. Ceram. Soc. 82, 797–818 (1999).

    Article  CAS  Google Scholar 

  2. Garcia, V. et al. Giant tunnel electroresistance for non-destructive readout of ferroelectric states. Nature 460, 81–84 (2009).

    Article  CAS  Google Scholar 

  3. Grinberg, I. Perovskite oxides for visible-light absorbing ferroelectric and photovoltaic materials. Nature 503, 509–512 (2013).

    Article  CAS  Google Scholar 

  4. Anton, S. R. & Sodano, H. A. A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater. Struct. 16, R1–R21 (2007).

    Article  CAS  Google Scholar 

  5. Yan, H. X. et al. A lead-free high-Curie-point ferroelectric ceramic, CaBi2Nb2O9 . Adv. Mater. 17, 1261–1265 (2005).

    Article  CAS  Google Scholar 

  6. Choi, K. J. et al. Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306, 1005–1009 (2004).

    Article  CAS  Google Scholar 

  7. Schlom, D. G. et al. Strain tuning of ferroelectric thin films. Annu. Rev. Mater. Res. 37, 589–626 (2007).

    Article  CAS  Google Scholar 

  8. Ramrez, R., Lapena, M. F. & Gonzalo, J. A. Pressure dependence of free-energy expansion coefficients in PbTiO3 and BaTiO3 and tricritical-point behavior. Phys. Rev. B 42, 2604–2606 (1990).

    Article  CAS  Google Scholar 

  9. Sanjurjo, J. A., Lopez-Cruz, E. & Burns, G. High-pressure Raman study of zone-center phonons in PbTiO3 . Phys. Rev. B 28, 7260–7268 (1983).

    Article  CAS  Google Scholar 

  10. Tinte, S., Rabe, K. M. & Vanderbilt, D. Anomalous enhancement of tetragonality in PbTiO3 induced by negative pressure. Phys. Rev. B. 68, 144105 (2003).

    Article  Google Scholar 

  11. Cheng, H. M. et al. Hydrothermal synthesis of acicular lead titanate fine powders. J. Am. Ceram. Soc. 75, 1123–1128 (1992).

    Article  CAS  Google Scholar 

  12. Wang, J. et al. Structure determination and compositional modification of body-centered tetragonal PX-phase lead titanate. Chem. Mater. 23, 2529–2535 (2011).

    Article  CAS  Google Scholar 

  13. Wang, J. et al. Mechanism of hydrothermal growth of ferroelectric PZT nanowires. J. Cryst. Growth 347, 1–6 (2012).

    Article  CAS  Google Scholar 

  14. Mabud, S. A. & Glazer, A. M. Lattice parameters and birefringence in PbTiO3 single crystal. J. Appl. Phys. 62, 49–53 (1979).

    Google Scholar 

  15. Burns, G. & Scott, B. A. Lattice modes in ferroelectric perovskites: PbTiO3 . Phys. Rev. B 7, 3088–3101 (1973).

    Article  CAS  Google Scholar 

  16. Fontana, M. D., Idrissi, H., Kugel, G. E. & Wojcik, K. Raman spectrum in PbTiO3 re-examined: Dynamics of the soft phonon and the central peak. J. Phys.: Condens. Matter 3, 8695–8705 (1991).

    CAS  Google Scholar 

  17. Foster, C. M., Li, Z., Grimsditch, M., Chan, S.-K. & Lam, D. J. Anharmonicity of the lowest-frequency A1(TO) phonon in PbTiO3 . Phys. Rev. B 48, 10160–10167 (1993).

    Article  CAS  Google Scholar 

  18. Haun, M. J., Furman, E., Jang, S. J., McKinstry, H. A. & Cross, L. E. Thermodynamic theory of PbTiO3 . J. Appl. Phys. 62, 3331–3338 (1987).

    Article  CAS  Google Scholar 

  19. Naumov, I. I. & Fu, H. X. Spontaneous polarization in one-dimensional Pb(ZrTi)O3 nanowires. Phys. Rev. Lett. 95, 247602 (2005).

    Article  Google Scholar 

  20. Geneste, G., Bousquet, E., Junquera, J. & Ghosez, P. Finite-size effects in BaTiO3 nanowires. Appl. Phys. Lett. 88, 112906 (2006).

    Article  Google Scholar 

  21. Spanier, J. E. et al. Ferroelectric phase transition in individual single-crystalline BaTiO3 nanowires. Nano Lett. 6, 735–739 (2006).

    Article  CAS  Google Scholar 

  22. Junquera, J. & Ghosez, P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506–509 (2003).

    Article  CAS  Google Scholar 

  23. Huang, Y., Hutchinson, J. W. & Tvergaard, V. Cavitation instabilities in elastic plastic solids. J. Mech. Phys. Solids 39, 223–241 (1991).

    Article  Google Scholar 

  24. Tszeng, T. C. Quasistatic and dynamic growth of sub-microscale spherical voids. Mech. Mater. 41, 584–598 (2009).

    Article  Google Scholar 

  25. Cohen, T. & Durban, D. Hypervelocity cavity expansion in porous elastoplastic solids. Trans. ASME 80, 011017 (2013).

    Article  Google Scholar 

  26. Abyzov, A. S., Schmelzer, J. W. P. & Fokin, V. M. Theory of pore formation in glass under tensile stress: Generalized Gibbs approach. J. Non-Cryst. Solids 357, 3474–3479 (2011).

    Article  CAS  Google Scholar 

  27. Nakamura, A. et al. Self-elongated growth of nanopores in annealed amorphous Ta2O5 films. Scr. Mater. 66, 182–185 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. [268058]. Research within the MacDiarmid Institute is supported under the New Zealand Centres of Research Excellence fund. J. Wang acknowledges the National Natural Science Foundation of China (Grant No. 51302143) for financial support. Additional financial support was received from the Swiss National Science Foundation (Grant No. 200020_153177). We thank K. Vaideeswaran for sample preparation using focused ion beam and A. Duncan for nano-beam electron diffraction experiments using the JEOL 2200FS electron microscope.

Author information

Authors and Affiliations

Authors

Contributions

J.W. prepared the samples and merged the theory/modelling with experimental results. B.W.-v.E. and J.T. performed Raman spectroscopy on single wires. T.S. and A.T. conducted the modelling. C.S., X.-K.W. and M.C. characterized the sample by TEM. A.K. performed ab initio calculations advised by A.T. L.J.M. conducted piezoresponse measurements on individual wires. P.G. and B.D. carried out XRD measurements. J.W. and J.T. developed the concept of the paper. J.W., J.T. and N.S. wrote the manuscript with inputs from T.S. and A.T. N.S. was responsible for overall direction and coordination. All authors contributed to the manuscript and the interpretation of the data.

Corresponding authors

Correspondence to Jin Wang or Nava Setter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1534 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wylie-van Eerd, B., Sluka, T. et al. Negative-pressure-induced enhancement in a freestanding ferroelectric. Nature Mater 14, 985–990 (2015). https://doi.org/10.1038/nmat4365

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4365

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing