Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nanocapillarity-mediated magnetic assembly of nanoparticles into ultraflexible filaments and reconfigurable networks

Abstract

The fabrication of multifunctional materials with tunable structure and properties requires programmed binding of their building blocks1,2. For example, particles organized in long-ranged structures by external fields3,4 can be bound permanently into stiff chains through electrostatic or van der Waals attraction4,5, or into flexible chains through soft molecular linkers such as surface-grafted DNA or polymers6,7,8,9,10,11. Here, we show that capillarity-mediated binding between magnetic nanoparticles coated with a liquid lipid shell can be used for the assembly of ultraflexible microfilaments and network structures. These filaments can be magnetically regenerated on mechanical damage, owing to the fluidity of the capillary bridges between nanoparticles and their reversible binding on contact. Nanocapillary forces offer opportunities for assembling dynamically reconfigurable multifunctional materials that could find applications as micromanipulators, microbots with ultrasoft joints, or magnetically self-repairing gels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Magnetic assembly of permanent flexible nanoparticle filaments by nanocapillarity.
Figure 2: The composition of the filaments reveals the role of the lipid in nanoparticle assembly.
Figure 3: Experimental examples of phase-transition disintegration and characterization of the ultrahigh flexibility of the nanocapillary-bound filaments.
Figure 4: Examples of self-closing and magnetic repair of sticky filaments.

Similar content being viewed by others

References

  1. Nie, Z., Petukhova, A. & Kumacheva, E. Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nature Nanotech. 5, 15–25 (2010).

    Article  CAS  Google Scholar 

  2. Velev, O. D. & Gupta, S. Materials fabricated by micro- and nanoparticle assembly—the challenging path from science to engineering. Adv. Mater. 21, 1897–1905 (2009).

    Article  CAS  Google Scholar 

  3. Grzelczak, M., Vermant, J., Furst, E. M. & Liz-Marzan, L. M. Directed self-sssembly of nanoparticles. ACS Nano 4, 3591–3605 (2010).

    Article  CAS  Google Scholar 

  4. Hermanson, K. D., Lumsdon, S. O., Williams, J. P., Kaler, E. W. & Velev, O. D. Dielectrophoretic assembly of electrically functional microwires from nanoparticle suspensions. Science 294, 1082–1086 (2001).

    Article  CAS  Google Scholar 

  5. Bharti, B., Findenegg, G. H. & Velev, O. D. Co-assembly of oppositely charged particles into linear clusters and chains of controllable length. Sci. Rep. 2, 1004 (2012).

    Article  Google Scholar 

  6. Hill, L. J. & Pyun, J. Colloidal polymers via dipolar assembly of magnetic nanoparticle monomers. ACS Appl. Mater. Interfaces 6, 6022–6032 (2014).

    Article  CAS  Google Scholar 

  7. Singh, H., Laibinis, P. E. & Hatton, T. A. Synthesis of flexible magnetic nanowires of permanently linked core-shell magnetic beads tethered to a glass surface patterned by microcontact printing. Nano Lett. 5, 2149–2154 (2005).

    Article  CAS  Google Scholar 

  8. Li, D., Banon, S. & Biswal, S. L. Bending dynamics of DNA-linked colloidal particle chains. Soft Matter 6, 4197–4204 (2010).

    Article  CAS  Google Scholar 

  9. Cohen-Tannoudji, L. et al. Polymer bridging probed by magnetic colloids. Phys. Rev. Lett. 94, 038301 (2005).

    Article  Google Scholar 

  10. Devries, G. a et al. Divalent metal nanoparticles. Science 315, 358–361 (2007).

    Article  CAS  Google Scholar 

  11. Leunissen, M. E. et al. Switchable self-protected attractions in DNA-functionalized colloids. Nature Mater. 8, 590–595 (2009).

    Article  CAS  Google Scholar 

  12. Hornbaker, D. J., Albert, R., Albert, I., Barabasi, A.-L. & Schiffer, P. What keeps sandcastles standing? Nature 387, 765 (1997).

    Article  CAS  Google Scholar 

  13. Butt, H. J. & Kappl, M. Normal capillary forces. Adv. Colloid Interface Sci. 146, 48–60 (2009).

    Article  CAS  Google Scholar 

  14. Min, Y., Akbulut, M., Kristiansen, K., Golan, Y. & Israelachvili, J. The role of interparticle and external forces in nanoparticle assembly. Nature Mater. 7, 527–538 (2008).

    Article  CAS  Google Scholar 

  15. Koos, E. & Willenbacher, N. Capillary forces in suspension rheology. Science 331, 897–900 (2011).

    Article  CAS  Google Scholar 

  16. Bowden, N., Choi, I. S., Grzybowski, B. A., Whitesides, G. M. & Street, O. Mesoscale self-assembly of hexagonal plates using lateral capillary forces: Synthesis using the ‘capillary bond’. J. Am. Chem. Soc. 121, 5373–5391 (1999).

    Article  CAS  Google Scholar 

  17. De Volder, M. & Hart, A. J. Engineering hierarchical nanostructures by elastocapillary self-assembly. Angew. Chem. Int. Ed. 52, 2412–2425 (2013).

    Article  CAS  Google Scholar 

  18. Doyle, P. S., Bibette, J., Bancaud, A. & Viovy, J.-L. Self-assembled magnetic matrices for DNA separation chips. Science 295, 2237 (2002).

    Article  CAS  Google Scholar 

  19. Cho, E. C., Shim, J., Lee, K. E., Kim, J. W. & Han, S. S. Flexible magnetic microtubules structured by lipids and magnetic nanoparticles. ACS Appl. Mater. Interfaces 1, 1159–1162 (2009).

    Article  CAS  Google Scholar 

  20. Bannwarth, M. B. et al. Well-defined nanofibers with tunable morphology from spherical colloidal building blocks. Angew. Chem. Int. Ed. 52, 10107–10111 (2013).

    Article  CAS  Google Scholar 

  21. Klinkova, A., Thérien-Aubin, H., Choueiri, R. M., Rubinstein, M. & Kumacheva, E. Colloidal analogs of molecular chain stoppers. Proc. Natl Acad. Sci. USA 110, 18775–18779 (2013).

    Article  CAS  Google Scholar 

  22. Muxworthy, A. R. & Williams, W. Critical superparamagnetic/single-domain grain sizes in interacting magnetite particles: Implications for magnetosome crystals. J. R. Soc. Interface 6, 1207–1212 (2009).

    Article  Google Scholar 

  23. Pichon, B. P. et al. 2D assembling of magnetic iron oxide nanoparticles promoted by SAMs used as well-addressed surfaces. J. Phys. Chem. C 114, 9041–9048 (2010).

    Article  CAS  Google Scholar 

  24. Rawicz, W., Olbrich, K. C., McIntosh, T., Needham, D. & Evans, E. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys. J. 79, 328–339 (2000).

    Article  CAS  Google Scholar 

  25. Royer, J. R. et al. High-speed tracking of rupture and clustering in freely falling granular streams. Nature 459, 1110–1113 (2009).

    Article  CAS  Google Scholar 

  26. Bico, J., Ashmore-Chakrabarty, J., McKinley, G. H. & Stone, H. A. Rolling stones: The motion of a sphere down an inclined plane coated with a thin liquid film. Phys. Fluids 21, 082103 (2009).

    Article  Google Scholar 

  27. Rubinstein, M. & Colby, R. H. Polymer Physics (Oxford Univ. Press, 2003).

    Google Scholar 

  28. Boal, D. Mechanics of the Cell (Cambridge Univ. Press, 2002).

    Google Scholar 

  29. Biswal, S. L. & Gast, A. P. Rotational dynamics of semiflexible paramagnetic particle chains. Phys. Rev. E 69, 041406 (2004).

    Article  Google Scholar 

  30. Ghosh, B. & Urban, M. W. Self-repairing oxetane-substituted chitosan polyurethane networks. Science 323, 1458–1460 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from the US National Science Foundation (NSF) Triangle MRSEC on Programmable Soft Matter (DMR-1121107) and the US Army Research Office (ARO) (W911NF-15-1-0115). M.R. acknowledges financial support from the NSF under grants DMR-1122483, DMR-1309892 and DMR-1436201, from the National Institutes of Health (NIH) under grants P01-HL108808 and 1UH2HL123645, and from the Cystic Fibrosis Foundation. A.L.F. thanks BIA-INRA Nantes for her new faculty fellowship. We gratefully acknowledge C. Gaillard for the cryo-TEM experiments done at the BIBS Plate-forme INRA Nantes, France. We acknowledge the experimental assistance of B. Houinsou-Houssou, N. Galinsky, J. Zhao and J. C. Ledford. We are also grateful to L. Reynolds, J. Tracy and G. H. Findenegg for discussions on the data and their interpretation.

Author information

Authors and Affiliations

Authors

Contributions

B.B., A.-L.F. and O.D.V. conceived and designed the experiments. B.B. and A.-L.F. performed the experiments. M.R. proposed the persistence-length analysis and interpretation of filament flexibility. B.B. performed the experimental data analysis. B.B. and O.D.V. wrote the manuscript. All authors read and commented on it.

Corresponding author

Correspondence to Orlin D. Velev.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1950 kb)

Supplementary Information

Supplementary Movie 1 (MP4 1856 kb)

Supplementary Information

Supplementary Movie 2 (MP4 2333 kb)

Supplementary Information

Supplementary Movie 3 (MP4 781 kb)

Supplementary Information

Supplementary Movie 4 (MP4 7944 kb)

Supplementary Information

Supplementary Movie 5 (MP4 5698 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bharti, B., Fameau, AL., Rubinstein, M. et al. Nanocapillarity-mediated magnetic assembly of nanoparticles into ultraflexible filaments and reconfigurable networks. Nature Mater 14, 1104–1109 (2015). https://doi.org/10.1038/nmat4364

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4364

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing