Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates

Abstract

The efficacy of implanted biomedical devices is often compromised by host recognition and subsequent foreign body responses. Here, we demonstrate the role of the geometry of implanted materials on their biocompatibility in vivo. In rodent and non-human primate animal models, implanted spheres 1.5 mm and above in diameter across a broad spectrum of materials, including hydrogels, ceramics, metals and plastics, significantly abrogated foreign body reactions and fibrosis when compared with smaller spheres. We also show that for encapsulated rat pancreatic islet cells transplanted into streptozotocin-treated diabetic C57BL/6 mice, islets prepared in 1.5-mm alginate capsules were able to restore blood-glucose control for up to 180 days, a period more than five times longer than for transplanted grafts encapsulated within conventionally sized 0.5-mm alginate capsules. Our findings suggest that the in vivo biocompatibility of biomedical devices can be significantly improved simply by tuning their spherical dimensions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Increasing alginate sphere size results in reduced cellular deposition and fibrosis formation on the spheres.
Figure 2: Increasing the spherical diameter of a variety of materials, including, hydrogels, ceramics, metals and plastics, results in reduced foreign body responses.
Figure 3: Comparing the size- and shape-dependent effects of fibrosis formation on alginate hydrogels implanted in the subcutaneous dorsal region of non-human primates.
Figure 4: Comparison of 0.5 and 1.5-mm alginate capsules encapsulating rat islets (500 IEs) in curing STZ-induced C57BL/6 diabetic mice.
Figure 5: Kinetic profiling of host response to SLG20 alginate microspheres of diameter 0.5 and 1.5 mm.

Similar content being viewed by others

References

  1. Kearney, C. J. & Mooney, D. J. Macroscale delivery systems for molecular and cellular payloads. Nature Mater. 12, 1004–1017 (2013).

    CAS  Google Scholar 

  2. Farra, R. et al. First-in-human testing of a wirelessly controlled drug delivery microchip. Sci. Transl. Med. 4, 122ra121 (2012).

    Google Scholar 

  3. Nichols, S. P., Koh, A., Storm, W. L., Shin, J. H. & Schoenfisch, M. H. Biocompatible materials for continuous glucose monitoring devices. Chem. Rev. 113, 2528–2549 (2013).

    CAS  Google Scholar 

  4. Rosen, M. R., Robinson, R. B., Brink, P. R. & Cohen, I. S. The road to biological pacing. Nature Rev. Cardiol. 8, 656–666 (2011).

    Google Scholar 

  5. Hubbell, J. A. & Langer, R. Translating materials design to the clinic. Nature Mater. 12, 963–966 (2013).

    CAS  Google Scholar 

  6. Franz, S., Rammelt, S., Scharnweber, D. & Simon, J. C. Immune responses to implants—a review of the implications for the design of immunomodulatory biomaterials. Biomaterials 32, 6692–6709 (2011).

    CAS  Google Scholar 

  7. Anderson, J. M., Rodriguez, A. & Chang, D. T. Foreign body reaction to biomaterials. Semin. Immunol. 20, 86–100 (2008).

    CAS  Google Scholar 

  8. Williams, D. F. On the mechanisms of biocompatibility. Biomaterials 29, 2941–2953 (2008).

    CAS  Google Scholar 

  9. Ratner, B. D. Reducing capsular thickness and enhancing angiogenesis around implant drug release systems. J. Control. Release 78, 211–218 (2002).

    CAS  Google Scholar 

  10. Bryers, J. D., Giachelli, C. M. & Ratner, B. D. Engineering biomaterials to integrate and heal: The biocompatibility paradigm shifts. Biotechnol. Bioeng. 109, 1898–1911 (2012).

    CAS  Google Scholar 

  11. Zhang, L. et al. Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nature Biotechnol. 31, 553–556 (2013).

    CAS  Google Scholar 

  12. Smith, R. S. et al. Vascular catheters with a nonleaching poly-sulfobetaine surface modification reduce thrombus formation and microbial attachment. Sci. Transl. Med. 4, 153ra132 (2012).

    Google Scholar 

  13. Ma, M. et al. Development of cationic polymer coatings to regulate foreign-body responses. Adv. Mater. 23, H189–H194 (2011).

    CAS  Google Scholar 

  14. Rodriguez, P. L. et al. Minimal “Self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 339, 971–975 (2013).

    CAS  Google Scholar 

  15. Kim, Y. K., Que, R., Wang, S. W. & Liu, W. F. Modification of biomaterials with a self-protein inhibits the macrophage response. Adv. Healthc. Mater. 3, 989–994 (2014).

    CAS  Google Scholar 

  16. Madden, L. R. et al. Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proc. Natl Acad. Sci. USA 107, 15211–15216 (2010).

    CAS  Google Scholar 

  17. Kusaka, T. et al. Effect of silica particle size on macrophage inflammatory responses. PLoS ONE 9, e92634 (2014).

    Google Scholar 

  18. Zandstra, J. et al. Microsphere size influences the foreign body reaction. Eur. Cells Mater. 28, 335–347 (2014).

    CAS  Google Scholar 

  19. Matlaga, B. F., Yasenchak, L. P. & Salthouse, T. N. Tissue response to implanted polymers: The significance of sample shape. J. Biomed. Mater. Res. 10, 391–397 (1976).

    CAS  Google Scholar 

  20. Salthouse, T. N. Some aspects of macrophage behavior at the implant interface. J. Biomed. Mater. Res. 18, 395–401 (1984).

    CAS  Google Scholar 

  21. Helton, K. L., Ratner, B. D. & Wisniewski, N. A. Biomechanics of the sensor-tissue interface-effects of motion, pressure, and design on sensor performance and the foreign body response-part I: Theoretical framework. J. Diabetes Sci. Technol. 5, 632–646 (2011).

    Google Scholar 

  22. Brauker, J. H. et al. Neovascularization of synthetic membranes directed by membrane microarchitecture. J. Biomed. Mater. Res. 29, 1517–1524 (1995).

    CAS  Google Scholar 

  23. Ward, W. K., Slobodzian, E. P., Tiekotter, K. L. & Wood, M. D. The effect of microgeometry, implant thickness and polyurethane chemistry on the foreign body response to subcutaneous implants. Biomaterials 23, 4185–4192 (2002).

    CAS  Google Scholar 

  24. Lee, K. Y. & Mooney, D. J. Alginate: Properties and biomedical applications. Prog. Polym. Sci. 37, 106–126 (2012).

    CAS  Google Scholar 

  25. Whelehan, M. & Marison, I. W. Microencapsulation using vibrating technology. J. Microencapsulation 28, 669–688 (2011).

    CAS  Google Scholar 

  26. Lim, F. & Sun, A. M. Microencapsulated islets as bioartificial endocrine pancreas. Science 210, 908–910 (1980).

    CAS  Google Scholar 

  27. Scharp, D. W. & Marchetti, P. Encapsulated islets for diabetes therapy: History, current progress, and critical issues requiring solution. Adv. Drug Deliv. Rev. 67–68, 35–73 (2014).

    Google Scholar 

  28. Dolgin, E. Encapsulate this. Nature Med. 20, 9–11 (2014).

    CAS  Google Scholar 

  29. Dang, T. T. et al. Spatiotemporal effects of a controlled-release anti-inflammatory drug on the cellular dynamics of host response. Biomaterials 32, 4464–4470 (2011).

    CAS  Google Scholar 

  30. King, A., Sandler, S. & Andersson, A. The effect of host factors and capsule composition on the cellular overgrowth on implanted alginate capsules. J. Biomed. Mater. Res. 57, 374–383 (2001).

    CAS  Google Scholar 

  31. Kolb, M. et al. Differences in the fibrogenic response after transfer of active transforming growth factor-β1 gene to lungs of “fibrosis-prone” and “fibrosis-resistant” mouse strains. Am. J. Respir. Cell Mol. Biol. 27, 141–150 (2002).

    CAS  Google Scholar 

  32. Lekka, M., Sainz-Serp, D., Kulik, A. J. & Wandrey, C. Hydrogel microspheres: Influence of chemical composition on surface morphology, local elastic properties, and bulk mechanical characteristics. Langmuir 20, 9968–9977 (2004).

    CAS  Google Scholar 

  33. Shellenberger, K. & Logan, B. E. Effect of molecular scale roughness of glass beads on colloidal and bacterial deposition. Environ. Sci. Technol. 36, 184–189 (2002).

    CAS  Google Scholar 

  34. Papajova, E., Bujdos, M., Chorvat, D., Stach, M. & Lacik, I. Method for preparation of planar alginate hydrogels by external gelling using an aerosol of gelling solution. Carbohydr. Polym. 90, 472–482 (2012).

    CAS  Google Scholar 

  35. Fujie, T. et al. Evaluation of substrata effect on cell adhesion properties using freestanding poly(L-lactic acid) nanosheets. Langmuir 27, 13173–13182 (2011).

    CAS  Google Scholar 

  36. Qi, M. et al. A recommended laparoscopic procedure for implantation of microcapsules in the peritoneal cavity of non-human primates. J. Surg. Res. 168, e117–e123 (2011).

    Google Scholar 

  37. Dang, T. T. et al. Enhanced function of immuno-isolated islets in diabetes therapy by co-encapsulation with an anti-inflammatory drug. Biomaterials 34, 5792–5801 (2013).

    CAS  Google Scholar 

  38. de Groot, M., Schuurs, T. A. & van Schilfgaarde, R. Causes of limited survival of microencapsulated pancreatic islet grafts. J. Surg. Res. 121, 141–150 (2004).

    CAS  Google Scholar 

  39. Strand, B. L., Gaserod, O., Kulseng, B., Espevik, T. & Skjak-Baek, G. Alginate-polylysine-alginate microcapsules: Effect of size reduction on capsule properties. J. Microencapsulation 19, 615–630 (2002).

    CAS  Google Scholar 

  40. Robitaille, R. et al. Studies on small (<350 microm) alginate-poly-L-lysine microcapsules. III. Biocompatibility Of smaller versus standard microcapsules. J. Biomed. Mater. Res. 44, 116–120 (1999).

    CAS  Google Scholar 

  41. Shi, C. & Pamer, E. G. Monocyte recruitment during infection and inflammation. Nature Rev. Immunol. 11, 762–774 (2011).

    CAS  Google Scholar 

  42. Burnett, S. H. et al. Conditional macrophage ablation in transgenic mice expressing a Fas-based suicide gene. J. Leukocyte Biol. 75, 612–623 (2004).

    CAS  Google Scholar 

  43. Gordon, S. Alternative activation of macrophages. Nature Rev. Immunol. 3, 23–35 (2003).

    CAS  Google Scholar 

  44. Mosser, D. M. & Edwards, J. P. Exploring the full spectrum of macrophage activation. Nature Rev. Immunol. 8, 958–969 (2008).

    CAS  Google Scholar 

  45. Murray, P. J. et al. Macrophage activation and polarization: Nomenclature and experimental guidelines. Immunity 41, 14–20 (2014).

    CAS  Google Scholar 

  46. Gordon, S. & Martinez, F. O. Alternative activation of macrophages: Mechanism and functions. Immunity 32, 593–604 (2010).

    CAS  Google Scholar 

  47. Lacy, P. E. & Kostianovsky, M. Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes 16, 35–39 (1967).

    CAS  Google Scholar 

  48. Morch, Y. A., Donati, I., Strand, B. L. & Skjak-Braek, G. Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules 7, 1471–1480 (2006).

    CAS  Google Scholar 

  49. Ricordi, C. et al. Islet isolation assessment in man and large animals. Acta Diabetol. Lat. 27, 185–195 (1990).

    CAS  Google Scholar 

  50. Adewola, A. F. et al. Microfluidic perifusion and imaging device for multi-parametric islet function assessment. Biomed. Microdevices 12, 409–417 (2010).

    Google Scholar 

  51. Keizer, J. & Magnus, G. ATP-sensitive potassium channel and bursting in the pancreatic beta cell. A theoretical study. Biophys. J. 56, 229–242 (1989).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Juvenile Diabetes Research Foundation (JDRF) (Grant 17-2007-1063), the Leona M. and Harry B. Helmsley Charitable Trust Foundation (Grant 09PG-T1D027), the National Institutes of Health (Grants EB000244, EB000351, DE013023 and CA151884), the Koch Institute Support (core) Grant P30-CA14051 from the National Cancer Institute, and also by a generous gift from the Tayebati Family Foundation. O.V. was supported by JDRF and DOD/CDMRP postdoctoral fellowships (Grants 3-2013-178 and W81XWH-13-1-0215, respectively). J.O. is supported by the National Institutes of Health (NIH/NIDDK) R01DK091526 and the Chicago Diabetes Project. J.M-E. is supported by the American Diabetes Association (ADA) Clinical Scientist Training Award (7-12-CST-03) and the American Society of Transplant Surgeons (ASTS) Presidential Student Mentor Award. The authors would like to acknowledge the use of resources at the Koch Institute Swanson Biotechnology Center for technical support, specifically, the Hope Babette Tang Histology, Microscopy, Flow Cytometry, and Animal Imaging and pre-clinical testing core facilities. We acknowledge the use of imaging resources at the W. M. Keck Biological Imaging Facility (Whitehead Institute) and assistance from W. Salmon. We thank R. Bogorad and K. Whitehead for helpful discussions and feedback on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

O.V., J.C.D., M.M. and D.G.A. conceived the idea, designed experiments, analysed data, and wrote the manuscript. O.V., J.C.D., M.M. A.J.V., A.R.B., J.L., E.L., J.W., W.S.L., S.J., A.C., S.S., K.T., J.H-L., S.A-D., M.B., J.M-E., Y.W., M.Q., D.M.L., M.C., N.D., R.T., I.L., G.C.W. and J.O. performed experiments. H.H.T. performed statistical analyses of data sets and aided in the preparation of displays communicating data sets. G.C.W., J.O. and D.L.G. provided conceptual advice and technical support. R.L. and D.G.A. supervised the study. All authors discussed the results and assisted in the preparation of the manuscript.

Corresponding author

Correspondence to Daniel G. Anderson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3904 kb)

Supplementary Movie 1

Supplementary Movie 1 (AVI 9772 kb)

Supplementary Movie 2

Supplementary Movie 2 (AVI 9703 kb)

Supplementary Movie 3

Supplementary Movie 3 (AVI 5065 kb)

Supplementary Movie 4

Supplementary Movie 4 (AVI 5065 kb)

Supplementary Movie 5

Supplementary Movie 5 (AVI 5065 kb)

Supplementary Movie 6

Supplementary Movie 6 (AVI 6752 kb)

Supplementary Movie 7

Supplementary Movie 7 (AVI 5065 kb)

Supplementary Movie 8

Supplementary Movie 8 (AVI 5065 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veiseh, O., Doloff, J., Ma, M. et al. Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nature Mater 14, 643–651 (2015). https://doi.org/10.1038/nmat4290

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4290

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing