Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

High thermal conductivity in amorphous polymer blends by engineered interchain interactions

Abstract

Thermal conductivity is an important property for polymers, as it often affects product reliability (for example, electronics packaging), functionality (for example, thermal interface materials) and/or manufacturing cost1. However, polymer thermal conductivities primarily fall within a relatively narrow range (0.1–0.5 W m−1 K−1) and are largely unexplored. Here, we show that a blend of two polymers with high miscibility and appropriately chosen linker structure can yield a dense and homogeneously distributed thermal network. A sharp increase in cross-plane thermal conductivity is observed under these conditions, reaching over 1.5 W m−1 K−1 in typical spin-cast polymer blend films of nanoscale thickness, which is approximately an order of magnitude larger than that of other amorphous polymers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: High thermal conductivity in amorphous polymer blends by engineered interchain interactions.
Figure 2: Comparison of H-bond strengths in PAP:PAA, PAP:PVA and PAP:PVPh.
Figure 3: Thermal and structural properties of PAP:PAA.
Figure 4: Tapping-mode AFM data for PAP:PAA blends.

Similar content being viewed by others

References

  1. Chanda, M. & Roy, S. K. Plastics Technology Handbook 4th edn (CRC Press/Taylor Francis Group, 2007).

    Google Scholar 

  2. Mamunya, Y. P., Davydenko, V. V., Pissis, P. & Lebedev, E. Electrical and thermal conductivity of polymers filled with metal powders. Eur. Polym. J. 38, 1887–1897 (2002).

    Article  CAS  Google Scholar 

  3. Wong, C. P. & Bollampally, R. S. Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging. J. Appl. Polym. Sci. 74, 3396–3403 (1999).

    Article  CAS  Google Scholar 

  4. Shen, S., Henry, A., Tong, J., Zheng, R. T. & Chen, G. Polyethylene nanofibres with very high thermal conductivities. Nature Nanotech. 5, 251–255 (2010).

    Article  CAS  Google Scholar 

  5. Singh, V. et al. High thermal conductivity of chain-oriented amorphous polythiophene. Nature Nanotech. 9, 384–390 (2014).

    Article  CAS  Google Scholar 

  6. Wang, X. J., Ho, V., Segalman, R. A. & Cahill, D. G. Thermal conductivity of high-modulus polymer fibers. Macromolecules 46, 4937–4943 (2013).

    Article  CAS  Google Scholar 

  7. Kurabayashi, K., Asheghi, M., Touzelbaev, M. & Goodson, K. E. Measurement of the thermal conductivity anisotropy in polyimide films. J. Microelectromech. Syst. 8, 180–191 (1999).

    Article  CAS  Google Scholar 

  8. Choy, C. L. Thermal conductivity of polymers. Polymer 18, 984–1004 (1977).

    Article  CAS  Google Scholar 

  9. Allen, P. B., Feldman, J. L., Fabian, J. & Wooten, F. Diffusons, locons and propagons: Character of atomic vibrations in amorphous Si. Phil. Mag. B 79, 1715–1731 (1999).

    Article  CAS  Google Scholar 

  10. Hsieh, W. P. et al. Testing the minimum thermal conductivity model for amorphous polymers using high pressure. Phys. Rev. B 83, 174205 (2011).

    Article  Google Scholar 

  11. Shenogin, S., Bodapati, A., Keblinski, P. & McGaughey, A. J. H. Predicting the thermal conductivity of inorganic and polymeric glasses: The role of anharmonicity. J. Appl. Phys. 105, 034906 (2009).

    Article  Google Scholar 

  12. Regner, K. T. et al. Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance. Nature Commun. 4, 1640 (2013).

    Article  Google Scholar 

  13. O’Brien, P. J. et al. Bonding-induced thermal conductance enhancement at inorganic heterointerfaces using nanomolecular monolayers. Nature Mater. 12, 118–122 (2013).

    Article  Google Scholar 

  14. Yamamoto, O. & Kambe, H. Thermal conductivity of cross-linked polymers—comparison between measured and calculated thermal conductivities. Polym. J. 2, 623–628 (1971).

    Article  CAS  Google Scholar 

  15. Mark, J. E. Physical Properties of Polymers Handbook (AIP Press, 1996).

    Google Scholar 

  16. Steiner, T. The hydrogen bond in the solid state. Angew. Chem. Int. Ed. 41, 48–76 (2002).

    Article  CAS  Google Scholar 

  17. Utracki, L. A. Polymer Blends Handbook (Kluwer Academic Publishers, 2002).

    Google Scholar 

  18. Kunal, K., Robertson, C. G., Pawlus, S., Hahn, S. F. & Sokolov, A. P. Role of chemical structure in fragility of polymers: A qualitative picture. Macromolecules 41, 7232–7238 (2008).

    Article  CAS  Google Scholar 

  19. Coleman, M. M. & Painter, P. C. Hydrogen-bonded polymer blends. Prog. Polym. Sci. 20, 1–59 (1995).

    Article  CAS  Google Scholar 

  20. Lin, A. A., Kwei, T. K. & Reiser, A. On the physical meaning of the Kwei equation for the glass-transition temperature of polymer blends. Macromolecules 22, 4112–4119 (1989).

    Article  CAS  Google Scholar 

  21. Lee, S. M. & Cahill, D. G. Heat transport in thin dielectric films. J. Appl. Phys. 81, 2590–2595 (1997).

    Article  CAS  Google Scholar 

  22. Borca-Tasciuc, T., Kumar, A. R. & Chen, G. Data reduction in 3ω method for thin-film thermal conductivity determination. Rev. Sci. Instrum. 72, 2139–2147 (2001).

    Article  CAS  Google Scholar 

  23. Jin, Y. S., Shao, C., Kieffer, J., Pipe, K. P. & Shtein, M. Origins of thermal boundary conductance of interfaces involving organic semiconductors. J. Appl. Phys. 112, 093503 (2012).

    Article  Google Scholar 

  24. Koh, Y. K. et al. Comparison of the 3ω method and time-domain thermoreflectance for measurements of the cross-plane thermal conductivity of epitaxial semiconductors. J. Appl. Phys. 105, 054303 (2009).

    Article  Google Scholar 

  25. Kikugawa, G., Desai, T. G., Keblinski, P. & Ohara, T. Effect of crosslink formation on heat conduction in amorphous polymers. J. Appl. Phys. 114, 034302 (2013).

    Article  Google Scholar 

  26. Losego, M. D., Moh, L., Arpin, K. A., Cahill, D. G. & Braun, P. V. Interfacial thermal conductance in spun-cast polymer films and polymer brushes. Appl. Phys. Lett. 97, 011908 (2010).

    Article  Google Scholar 

  27. Jin, Y. et al. Thermal boundary resistance of copper phthalocyanine–metal interface. Appl. Phys. Lett. 98, 093305 (2011).

    Article  Google Scholar 

  28. Liu, J., Ju, S. H., Ding, Y. F. & Yang, R. G. Size effect on the thermal conductivity of ultrathin polystyrene films. Appl. Phys. Lett. 104, 153110 (2014).

    Article  Google Scholar 

  29. Stauffer, D. & Aharony, A. Introduction to Percolation Theory 2nd edn (Taylor & Francis, 1992).

    Google Scholar 

  30. Rong, W. R., Fan, Z. Y., Yu, Y., Bu, H. S. & Wang, M. Influence of entanglements on glass transition of atactic polystyrene. J. Polym. Sci. Part B 43, 2243–2251 (2005).

    Article  CAS  Google Scholar 

  31. Lemstra, P. J. & Kleintjens, L. A. Integration of Fundamental Polymer Science and Technology-2 222–226 (Elsevier Applied Science, 1988).

    Book  Google Scholar 

  32. Magonov, S. N., Elings, V. & Whangbo, M. H. Phase imaging and stiffness in tapping-mode atomic force microscopy. Surf. Sci. 375, L385–L391 (1997).

    Article  CAS  Google Scholar 

  33. Podsiadlo, P. et al. Ultrastrong and stiff layered polymer nanocomposites. Science 318, 80–83 (2007).

    Article  CAS  Google Scholar 

  34. Underwood, W. M. & Taylor, J. R. Thermal-conductivity of several plastics determined by an improved line-source apparatus. Polym. Eng. Sci. 18, 556–563 (1978).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences, as part of the Center for Solar and Thermal Energy Conversion in Complex Materials, an Energy Frontier Research Center (DE-SC0000957). This work was also partly supported by the Converging Research Center Program funded by the Ministry of Science, ICT and Future Planning (Project No. 2014M3C1A8048791). G-H.K. also acknowledges a PISET fellowship from the University of Michigan Energy Institute. All authors acknowledge the Lurie Nanofabrication Facility and Electron Microbeam Analysis Laboratory for sample preparation and characterization.

Author information

Authors and Affiliations

Authors

Contributions

G-H.K. conceived the initial ideas with the help of K.P.P., and measured and analysed the thermal conductivity and AFM data. J.K., D.L. and A.S. designed the polymer systems. D.L., A.S. and G-H.K. prepared the polymer blend films. D.L. and A.S. measured and analysed FTIR spectroscopy data. L.S. deposited metal patterns and measured film thicknesses. G-H.K., A.S., and M.S.K. measured and analysed DSC data. D.L. measured GIXS. D.G. measured PALS. J.K. and K.P.P. supervised the work. G-H.K. wrote the manuscript with contributions from all authors, and J.K. and K.P.P. revised the manuscript.

Corresponding authors

Correspondence to Jinsang Kim or Kevin P. Pipe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3827 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, GH., Lee, D., Shanker, A. et al. High thermal conductivity in amorphous polymer blends by engineered interchain interactions. Nature Mater 14, 295–300 (2015). https://doi.org/10.1038/nmat4141

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4141

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing