Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Synthesis of an open-framework allotrope of silicon

Abstract

Silicon is ubiquitous in contemporary technology. The most stable form of silicon at ambient conditions takes on the structure of diamond (cF8, d-Si) and is an indirect bandgap semiconductor, which prevents it from being considered as a next-generation platform for semiconductor technologies1,2,3,4. Here, we report the formation of a new orthorhombic allotrope of silicon, Si24, using a novel two-step synthesis methodology. First, a Na4Si24 precursor was synthesized at high pressure5; second, sodium was removed from the precursor by a thermal ‘degassing’ process. The Cmcm structure of Si24, which has 24 Si atoms per unit cell (oC24), contains open channels along the crystallographic a-axis that are formed from six- and eight-membered sp3 silicon rings. This new allotrope possesses a quasidirect bandgap near 1.3 eV. Our combined experimental/theoretical study expands the known allotropy for element fourteen and the unique high-pressure precursor synthesis methodology demonstrates the potential for new materials with desirable properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structures of Na4Si24 and Si24.
Figure 2: Structure determination and composition information for Si24.
Figure 3: Electronic and optical properties of Si24.
Figure 4: Absorption spectra.

Similar content being viewed by others

References

  1. Ng, W. L. et al. An efficient room-temperature silicon-based light-emitting diode. Nature 410, 192–194 (2001).

    Article  CAS  Google Scholar 

  2. Theis, T. N. & Solomon, P. M. It’s time to reinvent the transistor. Science 327, 1600–1601 (2010).

    Article  CAS  Google Scholar 

  3. Fujita, M. Silicon photonics: Nanocavity brightens silicon. Nature Photon. 7, 264–265 (2013).

    Article  CAS  Google Scholar 

  4. Botti, S., Flores-Livas, J. A., Amsler, M., Goedecker, S. & Marques, M. A. L. Low-energy silicon allotropes with strong absorption in the visible for photovoltaic applications. Phys. Rev. B 86, 121204(R) (2012).

    Article  Google Scholar 

  5. Kurakevych, O. O., Strobel, T. A., Kim, D. Y., Muramatsu, T. & Struzhkin, V. V. Na–Si clathrates are high-pressure phases: A melt-based route to control stoichiometry and properties. Cryst. Growth Des. 13, 303–307 (2012).

    Article  Google Scholar 

  6. Zwijnenburg, M. A., Jelfs, K. E. & Bromley, S. T. An extensive theoretical survey of low-density allotropy in silicon. Phys. Chem. Chem. Phys. 12, 8505–8512 (2010).

    Article  CAS  Google Scholar 

  7. Xiang, H. J., Huang, B., Kan, E., Wei, S-H. & Gong, X. G. Towards direct-gap silicon phases by the inverse band structure approach. Phys. Rev. Lett. 110, 118702 (2013).

    Article  CAS  Google Scholar 

  8. Malone, B. D. & Cohen, M. L. Prediction of a metastable phase of silicon in the Ibam structure. Phys. Rev. B 85, 024116 (2012).

    Article  Google Scholar 

  9. Tonkov, E. Y. & Ponyatovsky, E. G. Phase Transformations of Elements Under High Pressure (CRC Press, 2005).

    Google Scholar 

  10. Wentorf, R. H. & Kasper, J. S. Two new forms of silicon. Science 139, 338–339 (1963).

    Article  CAS  Google Scholar 

  11. Cros, C., Pouchard, M. & Hagenmuller, P. Sur deux nouvelles phases du système silicium-sodium. C. R. Acad. Sci. 260, 4764–4767 (1965).

    CAS  Google Scholar 

  12. Gryko, J. et al. Low-density framework form of crystalline silicon with a wide optical band gap. Phys. Rev. B 62, R7707–R7710 (2000).

    Article  CAS  Google Scholar 

  13. Kasper, J. S., Hagenmuller, P., Pouchard, M. & Cros, C. Clathrate structure of silicon Na8Si46 and NaxSi136 (x < 11). Science 150, 1713–1714 (1965).

    Article  CAS  Google Scholar 

  14. Schnering, H. V., Schwarz, M. & Nesper, R. The lithium sodium silicide Li3NaSi6 and the formation of allo-silicon. J. Less-Common Met. 137, 297–310 (1988).

    Article  Google Scholar 

  15. Malone, B. D., Sau, J. D. & Cohen, M. L. Ab initio survey of the electronic structure of tetrahedrally bonded phases of silicon. Phys. Rev. B 78, 035210 (2008).

    Article  Google Scholar 

  16. Besson, J. M., Mokhtari, E. H., Gonzalez, J. & Weill, G. Electrical properties semimetallic silicon III and semiconductive silicon IV at ambient pressure. Phys. Rev. Lett. 59, 473–476 (1987).

    Article  CAS  Google Scholar 

  17. Dong, J., Sankey, O. F. & Kern, G. Theoretical study of the vibrational modes and their pressure dependence in the pure clathrate-II silicon framework. Phys. Rev. B 60, 950–958 (1999).

    Article  CAS  Google Scholar 

  18. Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of pn junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    Article  CAS  Google Scholar 

  19. Guloy, A. M. et al. A guest-free germanium clathrate. Nature 443, 320–323 (2006).

    Article  CAS  Google Scholar 

  20. Connétable, D. Structural and electronic properties of p-doped silicon clathrates. Phy. Rev. B 75, 125202 (2007).

    Article  Google Scholar 

  21. Bryan, J. D. & Stucky, G. D. Eu4Ga8Ge16: A new four-coordinate clathrate network. Chem. Mater. 13, 253–257 (2001).

    Article  CAS  Google Scholar 

  22. Yamanaka, S. & Maekawa, S. Structural evolution of the binary system Ba–Si under high-pressure and high-temperature conditions. Z. Naturforsch. 61, 1493–1499 (2006).

    Article  CAS  Google Scholar 

  23. Wosylus, A. et al. High-pressure synthesis of strontium hexasilicide. Z. Naturforsch. 61, 1485–1492 (2006).

    Article  CAS  Google Scholar 

  24. Wosylus, A., Prots, Y., Burkhardt, U., Schnelle, W. & Schwarz, U. High-pressure synthesis of the electron-excess compound CaSi6 . Sci. Technol. Adv. Mater. 8, 383–388 (2007).

    Article  CAS  Google Scholar 

  25. Wosylus, A. et al. Breaking the Zintl rule: High-pressure synthesis of binary EuSi6 and its ternary derivative EuSi6−xGax (0 ≤ x ≤ 0.6). Solid State Sci. 8, 773–781 (2006).

    Article  CAS  Google Scholar 

  26. Stefanoski, S., Malliakas, C. D., Kanatzidis, M. G. & Nolas, G. S. Synthesis and structural characterization of NaxSi136 (0 < x ≤ 24) single crystal and low-temperature transport of polycrystalline specimens. Inorg. Chem. 51, 8686–8692 (2012).

    Article  CAS  Google Scholar 

  27. Baerlocher, Ch., McCusker, L. B. & Olson, D. H. Atlas of Zeolite Framework Types Vol. 86, 6th revised edn (Elsevier, 2007).

    Google Scholar 

  28. Conesa, J. C. Computer modeling of allo-Si and allo-Ge polymorphs. J. Phys. Chem. B 106, 3402–3409 (2002).

    Article  CAS  Google Scholar 

  29. Cundy, C. S. & Cox, P. A. The hydrothermal synthesis of zeolites: History and development from the earliest days to present time. Chem. Rev. 103, 663–701 (2003).

    Article  CAS  Google Scholar 

  30. San-Miguel, A. et al. High pressure behavior of silicon clathrates: A new class of low compressibility materials. Phys. Rev. Lett. 83, 5290–5293 (1999).

    Article  CAS  Google Scholar 

  31. Tritt, T. M. Semiconductors and Semimetals Vol. 69 (Academic, 2001).

    Google Scholar 

  32. Tauc, J., Grigorovici, R. & Vancu, A. Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi 15, 627–637 (1966).

    Article  CAS  Google Scholar 

  33. Salpeter, E. E. & Bethe, H. A. A relativistic equation for bound-state problems. Phys. Rev. 84, 1232–1242 (1951).

    Article  Google Scholar 

  34. Albrecht, S., Reining, L., Sol, R. D. & Onida, G. Ab initio calculation of excitonic effects in the optical spectra of semiconductors. Phys. Rev. Lett. 80, 4510–4513 (1998).

    Article  CAS  Google Scholar 

  35. Reference solar spectral irradiance: Air mass 1.5; http://rredc.nrel.gov/solar/spectra/am1.5

  36. Alonso, M. I., Wakita, K., Pascual, J., Garriga, M. & Yamamoto, N. Optical functions and electronic structure of CuInSe2, CuGaSe2, CuInS2, and CuGaS2 . Phys. Rev. B 63, 075203 (2001).

    Article  Google Scholar 

  37. Meng, Y. et al. High optical quality multicarat crystal diamond produced by chemical vapor deposition. Phys. Status Solidi A 209, 101–104 (2012).

    Article  CAS  Google Scholar 

  38. Zwijnenburg, M. A., Illas, F. & Bromley, S. T. Apparent scarcity of low-density polymorphs of inorganic solids. Phys. Rev. Lett. 104, 175503 (2010).

    Article  Google Scholar 

  39. Nguyen, M. C., Zhao, X., Wang, C-Z. & Ho, K-M. sp3-hybridized framework structure of group-14 elements discovered by genetic algorithm. Phys. Rev. B 89, 184112 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

The experimental work was supported by DARPA under contract numbers W31P4Q-13-1-0005 and W911NF-11-1-0300. The theoretical work was supported by Energy Frontier Research in Extreme Environments (EFree) Center, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science under award number DE-SC0001057. We thank T. Muramatsu and V. Struzhkin for assistance with electrical measurements, J. Holaday and Y. Kono for helping with experimental synthesis, J. Armstrong for support with SEM measurements, and J. Smith, B. Baptiste and H. Gou for help with XRD. Facilities and infrastructure support were provided by the following. Portions of this work were performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT operations are supported by DOE-NNSA under Award No. DE-NA0001974 and DOE-BES under Award No. DE-FG02-99ER45775, with partial instrumentation funding by NSF. The Advanced Photon Source is a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. X-ray diffraction facilities at the Geophysical Laboratory were supported, in part, by the WDC Research Fund. Na4Si24 precursor synthesis experiments with in situ XRD were performed at the ID06 beamline at the European Synchrotron Radiation Facility (ESRF), Grenoble, France. We are grateful to W. Crichton, J. Guignard and Y. Le Godec for providing assistance in using this beamline.

Author information

Authors and Affiliations

Authors

Contributions

D.Y.K. performed all theoretical calculations. S.S., O.O.K. and T.A.S. performed all experimental synthesis and characterization. All authors discussed the results and contributed to the manuscript.

Corresponding author

Correspondence to Timothy A. Strobel.

Ethics declarations

Competing interests

The authors declare that they have filed a provisional patent application.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2430 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D., Stefanoski, S., Kurakevych, O. et al. Synthesis of an open-framework allotrope of silicon. Nature Mater 14, 169–173 (2015). https://doi.org/10.1038/nmat4140

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4140

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing