Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes

Subjects

Abstract

Perovskite oxides have attracted significant attention as energy conversion materials for metal–air battery and solid-oxide fuel-cell electrodes owing to their unique physical and electronic properties. Amongst these unique properties is the structural stability of the cation array in perovskites that can accommodate mobile oxygen ions under electrical polarization. Despite oxygen ion mobility and vacancies having been shown to play an important role in catalysis, their role in charge storage has yet to be explored. Herein we investigate the mechanism of oxygen-vacancy-mediated redox pseudocapacitance for a nanostructured lanthanum-based perovskite, LaMnO3. This is the first example of anion-based intercalation pseudocapacitance as well as the first time oxygen intercalation has been exploited for fast energy storage. Whereas previous pseudocapacitor and rechargeable battery charge storage studies have focused on cation intercalation, the anion-based mechanism presented here offers a new paradigm for electrochemical energy storage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nanocrystal morphology of LaMnO3.09.
Figure 2: Electrochemical characterization of LaMnOδ.
Figure 3: Effect of electrolyte concentration on redox reactions for LaMnOδ.
Figure 4: Electrolyte studies of LaMnO3.09.
Figure 5: Mechanism of oxygen intercalation into LaMnOδ.
Figure 6: Symmetric cell cyclic voltammetry of r-LaMnO2.91.

Similar content being viewed by others

References

  1. Conway, B. E. Electrochemical supercapacitors (Kluwer–Academic, 1999).

    Book  Google Scholar 

  2. Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J. & Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nature Mater. 4, 366–377 (2005).

    Article  CAS  Google Scholar 

  3. Zheng, J. P. & Jow, T. R. A new charge storage mechanism for electrochemical capacitors. J. Electrochem. Soc. 142, 6–8 (1995).

    Article  Google Scholar 

  4. Patel, M. N. et al. High pseudocapacitance of MnO2 nanoparticles in graphitic disordered mesoporous carbon at high scan rates. J. Mater. Chem. 22, 3160–3169 (2012).

    Article  CAS  Google Scholar 

  5. Wang, H., Sanchez Casalongue, H., Liang, Y. & Dai, H. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc. 132, 7472–7477 (2010).

    Article  CAS  Google Scholar 

  6. Herrero, E., Buller, L. J. & Abruña, H. D. Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. Chem. Rev. 101, 1897–1930 (2001).

    Article  CAS  Google Scholar 

  7. Guidelli, R. & Schmickler, W. in Modern Aspects of Electrochemistry Vol. 38, 303–371 (Springer, 2005).

    Book  Google Scholar 

  8. Augustyn, V. et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nature Mater. 12, 518–522 (2013).

    Article  CAS  Google Scholar 

  9. Brezesinski, T., Wang, J., Tolbert, S. H. & Dunn, B. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nature Mater. 9, 146–151 (2010).

    Article  CAS  Google Scholar 

  10. Hahn, B. P., Long, J. W. & Rolison, D. R. Something from nothing: Enhancing electrochemical charge storage with cation vacancies. Acc. Chem. Res. 46, 1181–1191 (2013).

    Article  CAS  Google Scholar 

  11. Ishihara, T. Perovskite Oxide for Solid Oxide Fuel Cells (Springer, 2009).

    Book  Google Scholar 

  12. Wilde, P. M., Guther, T. J., Oesten, R. & Garche, J. Strontium ruthenate perovskite as the active material for supercapacitors. J. Electroanal. Chem. 461, 154–160 (1999).

    Article  CAS  Google Scholar 

  13. Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B. & Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383–1385 (2011).

    Article  CAS  Google Scholar 

  14. Suntivich, J. et al. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nature Chem. 3, 546–550 (2011).

    Article  CAS  Google Scholar 

  15. Wohlfahrt-Mehrens, M. et al. New materials for supercapacitors. J. Power Sources 105, 182–188 (2002).

    Article  CAS  Google Scholar 

  16. Hibino, M., Kimura, T., Suga, Y., Kudo, T. & Mizuno, N. Oxygen rocking aqueous batteries utilizing reversible topotactic oxygen insertion/extraction in iron-based perovskite oxides Ca1−xLaxFeO3−δ . Sci. Rep. 2, 601–605 (2012).

    Article  Google Scholar 

  17. Wang, J., Polleux, J., Lim, J. & Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 111, 14925–14931 (2007).

    Article  CAS  Google Scholar 

  18. Kalinin, S. V., Borisevich, A. & Fong, D. Beyond condensed matter physics on the nanoscale: The role of ionic and electrochemical phenomena in the physical functionalities of oxide materials. ACS Nano 6, 10423–10437 (2012).

    Article  CAS  Google Scholar 

  19. Hardin, W. G. et al. Highly active, nonprecious metal perovskite electrocatalysts for bifunctional metal–air battery electrodes. J. Phys. Chem. Lett. 4, 1254–1259 (2013).

    Article  CAS  Google Scholar 

  20. Cortés-Gil, R. et al. Evolution of magnetic behavior in oxygen deficient LaMnO3−δ . J. Phys. Chem. Solids 67, 579–582 (2006).

    Article  Google Scholar 

  21. Laiho, R. et al. Low-field magnetic properties of LaMnO3+δ with 0.065 ≤ δ ≤0.154. J. Phys. Chem. Solids 64, 2313–2319 (2003).

    Article  CAS  Google Scholar 

  22. Ruiz-González, L., Cortés-Gil, R., Alonso, J. M., González-Calbet, J. M. & Vallet-Regí, M. Revisiting the role of vacancies in manganese related perovskites. Open Inorg. Chem. J. 1, 37–46 (2007).

    Article  Google Scholar 

  23. Boehm, H. P. Acidic and basic properties of hydroxylated metal oxide surfaces. Discuss. Faraday Soc. 52, 264–275 (1971).

    Article  Google Scholar 

  24. Schmidt, T. J. et al. Characterization of high-surface-area electrocatalysts using a rotating disk electrode configuration. J. Electrochem. Soc. 145, 2354–2358 (1998).

    Article  CAS  Google Scholar 

  25. Wiberg, G. K. H., Mayrhofer, K. J. J. & Arenz, M. Investigation of the oxygen reduction activity on silver–a rotating disc electrode study. Fuel Cells 10, 575–581 (2010).

    Article  CAS  Google Scholar 

  26. Garsany, Y., Singer, I. L. & Swider-Lyons, K. E. Impact of film drying procedures on RDE characterization of Pt/VC electrocatalysis. J. Electroanal. Chem. 662, 396–406 (2011).

    Article  CAS  Google Scholar 

  27. Kudo, T., Obayashi, H. & Gejo, T. Electrochemical behavior of the perovskite-type Nd1−xSrxCoO3 in an aqueous alkaline solution. J. Electrochem. Soc. 122, 159–163 (1975).

    Article  CAS  Google Scholar 

  28. Grenier, J. C., Pouchard, M. & Wattiaux, A. Electrochemical synthesis: Oxygen intercalation. Curr. Opin. Solid State Mater. Sci. 1, 233–240 (1996).

    Article  CAS  Google Scholar 

  29. Piovano, A. et al. Time resolved in situ XAFS study of the electrochemical oxygen intercalation in SrFeO25 brownmillerite structure: Comparison with the homologous SrCoO25 system. J. Phys. Chem. C 115, 1311–1322 (2011).

    Article  CAS  Google Scholar 

  30. Karvonen, L. et al. O-K and Co-L XANES study on oxygen intercalation in perovskite SrCoO3−δ . Chem. Mater. 22, 70–76 (2010).

    Article  CAS  Google Scholar 

  31. Wattiaux, A. et al. A novel preparation method of the SrFeO3 cubic perovskite by electrochemical means. Solid State Commun. 77, 489–493 (1991).

    Article  CAS  Google Scholar 

  32. Mahesh, R., Kannan, K. R. & Rao, C. N. R. Electrochemical synthesis of ferromagnetic LaMnO3 and metallic NdNiO3 . J. Solid State Chem. 114, 294–296 (1995).

    Article  CAS  Google Scholar 

  33. Nemudry, A., Goldberg, E. L., Aguirre, M. & Alario-Franco, M. Á. Electrochemical topotactic oxidation of nonstoichiometric perovskites at ambient temperature. Solid State Sci. 4, 677–690 (2002).

    Article  CAS  Google Scholar 

  34. Abbate, M. et al. Controlled-valence properties of La1−xSrxFeO3 and La1−xSrxMnO3 studied by soft X-ray absorption spectroscopy. Phys. Rev. B 46, 4511–4519 (1992).

    Article  CAS  Google Scholar 

  35. Manthiram, A., Kuo, J. F. & Goodenough, J. B. Characterization of oxygen deficient perovskites as oxide ion electrolytes. Solid State Ion. 52, 225–234 (1993).

    Article  Google Scholar 

  36. Thomas, M. G. S. R., Bruce, P. G. & Goodenough, J. B. Lithium mobility in the layered lithium cobalt oxide (Li1−xCoO2). Solid State Ion. 17, 13–19 (1985).

    Article  CAS  Google Scholar 

  37. Wang, X. Q. et al. Ammonia treated ordered mesoporous carbons as catalytic materials for oxygen reduction reaction. Chem. Mater. 22, 2178–2180 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support for this work was provided by the R. A. Welch Foundation (grants F-1529 and F-1319). S.D. was supported as part of the Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, and Office of Basic Energy Sciences.

Author information

Authors and Affiliations

Authors

Contributions

J.T.M. and W.G.H. performed the experimental work and data analysis. S.D. contributed the carbon support. K.P.J. and K.J.S. planned the experiment and analysed the data.

Corresponding authors

Correspondence to Keith P. Johnston or Keith J. Stevenson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2961 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mefford, J., Hardin, W., Dai, S. et al. Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes. Nature Mater 13, 726–732 (2014). https://doi.org/10.1038/nmat4000

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4000

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing