Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Combinatorial development of bulk metallic glasses

Subjects

Abstract

The identification of multicomponent alloys out of a vast compositional space is a daunting task, especially for bulk metallic glasses composed of three or more elements. Despite an increasing theoretical understanding of glass formation, bulk metallic glasses are predominantly developed through a sequential and time-consuming trial-and-error approach. Even for binary systems, accurate quantum mechanical approaches are still many orders of magnitude away from being able to simulate the relatively slow kinetics of glass formation. Here, we present a high-throughput strategy where 3,000 alloy compositions are fabricated simultaneously and characterized for thermoplastic formability through parallel blow forming. Using this approach, we identified the composition with the highest thermoplastic formability in the glass-forming system Mg–Cu–Y. The method provides a versatile toolbox for unveiling complex correlations of material properties and glass formation, and should facilitate a drastic increase in the discovery rate of metallic glasses.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Correlation between glass-forming ability and thermoplastic formability.
Figure 2: Compositional library of approximately 3,000 samples synthesized through confocal magnetron co-sputtering and silicon micromachining.
Figure 3: Parallel blow-forming set-up of compositional membranes and its realization.
Figure 4: Mg–Cu–Y compositional library after parallel blow forming reveals the difference in TPF.
Figure 5: Thermoplastic formability and viscosity maps for Mg–Cu–Y.

References

  1. Cui, J. et al. Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width. Nature Mater. 5, 286–290 (2006).

    Article  CAS  Google Scholar 

  2. Johnson, W. L. Bulk glass-forming metallic alloys: science and technology. Mater. Res. Soc. Bull. 24, 42–56 (1999).

    Article  CAS  Google Scholar 

  3. Wang, W. H. Roles of minor additions in formation and properties of bulk metallic glasses. Prog. Mater. Sci. 52, 540–596 (2007).

    Article  CAS  Google Scholar 

  4. Inoue, A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279–306 (2000).

    Article  CAS  Google Scholar 

  5. Sheng, H. W., Luo, W. K., Alamgir, F. M., Bai, J. M. & Ma, E. Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 419–425 (2006).

    Article  CAS  Google Scholar 

  6. Inoue, A., Shen, B. L., Koshiba, H., Kato, H. & Yavari, A. R. Cobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties. Nature Mater. 2, 661–663 (2003).

    Article  CAS  Google Scholar 

  7. Pauly, S., Gorantla, S., Wang, G., Kuhn, U. & Eckert, J. Transformation-mediated ductility in CuZr-based bulk metallic glasses. Nature Mater. 9, 473–477 (2010).

    Article  CAS  Google Scholar 

  8. Demetriou, M. D. et al. A damage-tolerant glass. Nature Mater. 10, 123–128 (2011).

    Article  CAS  Google Scholar 

  9. Liu, Y. H. et al. Super plastic bulk metallic glasses at room temperature. Science 315, 1385–1388 (2007).

    Article  CAS  Google Scholar 

  10. Kumar, G., Tang, H. X. & Schroers, J. Nanomoulding with amorphous metals. Nature 457, 868–872 (2009).

    Article  CAS  Google Scholar 

  11. Klement, W., Willens, R. H. & Duwez, P. Non-crystalline structure in solidified gold–silicon alloys. Nature 187, 869–870 (1960).

    Article  CAS  Google Scholar 

  12. Turnbull, D. Under what conditions can a glass be formed. Contemp. Phys. 10, 473–488 (1969).

    Article  CAS  Google Scholar 

  13. Greer, A. L. Metallic glasses. Science 267, 1947–1953 (1995).

    Article  CAS  Google Scholar 

  14. Wang, D., Tan, H. & Li, Y. Multiple maxima of GFA in three adjacent eutectics in Zr–Cu–Al alloy system—A metallographic way to pinpoint the best glass forming alloys. Acta Mater. 53, 2969–2979 (2005).

    Article  CAS  Google Scholar 

  15. Miracle, D. B. A structural model for metallic glasses. Nature Mater. 3, 697–702 (2004).

    Article  CAS  Google Scholar 

  16. Fujita, T. et al. Atomic-scale heterogeneity of a multicomponent bulk metallic glass with excellent glass forming ability. Phys. Rev. Lett. 103, 075502 (2009).

    Article  CAS  Google Scholar 

  17. Egami, T. Universal criterion for metallic glass formation. Mater. Sci. Eng. A 226, 261–267 (1997).

    Article  Google Scholar 

  18. Lu, Z. P. & Liu, C. T. Glass formation criterion for various glass-forming systems. Phys. Rev. Lett. 91, 115505 (2003).

    Article  CAS  Google Scholar 

  19. Li, Y., Guo, Q., Kalb, J. A. & Thompson, C. V. Matching glass-forming ability with the density of the amorphous phase. Science 322, 1816–1819 (2008).

    Article  CAS  Google Scholar 

  20. Park, E. S. & Kim, D. H. Correlation between volumetric change and glass-forming ability of metallic glass-forming alloys. Appl. Phys. Lett. 92, 091915 (2008).

    Article  Google Scholar 

  21. Park, E. S., Kim, D. H. & Kim, W. T. Parameter for glass forming ability of ternary alloy systems. Appl. Phys. Lett. 86, 061907 (2005).

    Article  Google Scholar 

  22. Bendert, J. C., Gangopadhyay, A. K., Mauro, N. A. & Kelton, K. F. Volume expansion measurements in metallic liquids and their relation to fragility and glass forming ability: an energy landscape interpretation. Phys. Rev. Lett. 109, 185901 (2012).

    Article  CAS  Google Scholar 

  23. Ding, S. Y., Gregoire, J., Vlassak, J. J. & Schroers, J. Solidification of Au–Cu–Si alloys investigated by a combinatorial approach. J. Appl. Phys. 111, 114901 (2012).

    Article  Google Scholar 

  24. Schroers, J. Processing of bulk metallic glass. Adv. Mater. 22, 1566–1597 (2010).

    Article  CAS  Google Scholar 

  25. Busch, R. The thermophysical properties of bulk metallic glass-forming liquids. Jom-J. Min. Met. Mat. Soc. 52, 39–42 (2000).

    Article  CAS  Google Scholar 

  26. Saotome, Y., Itoh, K., Zhang, T. & Inoue, A. Superplastic nanoforming of Pd-based amorphous alloy. Scr. Mater. 44, 1541–1545 (2001).

    Article  CAS  Google Scholar 

  27. Schroers, J. On the formability of bulk metallic glass in its supercooled liquid state. Acta Mater. 56, 471–478 (2008).

    Article  CAS  Google Scholar 

  28. Long, Z. L. et al. A new criterion for predicting the glass-forming ability of bulk metallic glasses. J. Alloy Compd. 475, 207–219 (2009).

    Article  CAS  Google Scholar 

  29. Fan, G. J. & Fecht, H. J. A cluster model for the viscous flow of glass-forming liquids. J. Chem. Phys. 116, 5002–5006 (2002).

    Article  CAS  Google Scholar 

  30. Nieh, T. G., Wadsworth, J., Liu, C. T., Ohkubo, T. & Hirotsu, Y. Plasticity and structural instability in a bulk metallic glass deformed in the supercooled liquid region. Acta Mater. 49, 2887–2896 (2001).

    Article  CAS  Google Scholar 

  31. Waniuk, T. A., Schroers, J. & Johnson, W. L. Critical cooling rate and thermal stability of Zr–Ti–Cu–Ni–Be alloys. Appl. Phys. Lett. 78, 1213–1215 (2001).

    Article  CAS  Google Scholar 

  32. Busch, R., Schroers, J. & Wang, W. H. Thermodynamics and kinetics of bulk metallic glass. Mater. Res. Soc. Bull. 32, 620–623 (2007).

    Article  CAS  Google Scholar 

  33. Ma, H., Zheng, Q., Xu, J., Li, Y. & Ma, E. Doubling the critical size for bulk metallic glass formation in the Mg–Cu–Y ternary system. J. Mater. Res. 20, 2252–2255 (2005).

    Article  CAS  Google Scholar 

  34. Inoue, A., Kato, A., Zhang, T., Kim, S. G. & Masumoto, T. Mg–Cu–Y amorphous-alloys with high mechanical strengths produced by a metallic mold casting method. Mater. T. Jim. 32, 609–616 (1991).

    Article  CAS  Google Scholar 

  35. Pitt, E. B., Kumar, G. & Schroers, J. Temperature dependence of the thermoplastic formability in bulk metallic glasses. J. Appl. Phys. 110, 043518 (2011).

    Article  Google Scholar 

  36. Deng, Y. P. et al. A combinatorial thin film sputtering approach for synthesizing and characterizing ternary ZrCuAl metallic glasses. Intermetallics 15, 1208–1216 (2007).

    Article  CAS  Google Scholar 

  37. Li, Y., Guo, Q., Kalb, J. A. & Thompson, C. V. Matching glass-forming ability with the density of the amorphous phase. Science 322, 1816–1819 (2008).

    Article  CAS  Google Scholar 

  38. Guo, Q. et al. Density change upon crystallization of amorphous Zr–Cu–Al thin films. Acta Mater. 58, 3633–3641 (2010).

    Article  CAS  Google Scholar 

  39. Bohmer, R., Ngai, K. L., Angell, C. A. & Plazek, D. J. Nonexponential relaxations in strong and fragile glass formers. J. Chem. Phys. 99, 4201–4209 (1993).

    Article  Google Scholar 

  40. Sarac, B. et al. Three-dimensional shell fabrication using blow molding of bulk metallic glass. J. Microelectromech. Sys. 20, 28–36 (2011).

    Article  CAS  Google Scholar 

  41. Busch, R., Liu, W. & Johnson, W. L. Thermodynamics and kinetics of the Mg65Cu25Y10 bulk metallic glass forming liquid. J. Appl. Phys. 83, 4134–4141 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for support from NSF under Grant No. MRSEC DMR 1119826 (CRISP). The composition measurements were developed with support from the Department of Energy under Award Number DE-EE0005941. We also want to thank M. Power, M. Kanik and W. Chen for help with lithography.

Author information

Authors and Affiliations

Authors

Contributions

J.S. conceived and supervised the project. S.D., Y.Liu and Y.Li designed and conducted the experiments. Z.L. developed the model for viscosity calculation. S.S. fabricated the bulk samples and carried out thermoplastic formability test. F.J.W. carried out the structural characterization of the films. S.D., Y.Liu and J.S. analysed the data and wrote the paper. All authors discussed and commented on the manuscript.

Corresponding author

Correspondence to Jan Schroers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 746 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, S., Liu, Y., Li, Y. et al. Combinatorial development of bulk metallic glasses. Nature Mater 13, 494–500 (2014). https://doi.org/10.1038/nmat3939

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3939

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing