Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A nanoparticle-based strategy for the imaging of a broad range of tumours by nonlinear amplification of microenvironment signals

Abstract

Stimuli-responsive nanomaterials are increasingly important in a variety of applications such as biosensing, molecular imaging, drug delivery and tissue engineering. For cancer detection, a paramount challenge still exists in the search for methods that can illuminate tumours universally regardless of their genotypes and phenotypes. Here we capitalized on the acidic, angiogenic tumour microenvironment to achieve the detection of tumour tissues in a wide variety of mouse cancer models. This was accomplished using ultra pH-sensitive fluorescent nanoprobes that have tunable, exponential fluorescence activation on encountering subtle, physiologically relevant pH transitions. These nanoprobes were silent in the circulation, and then strongly activated (>300-fold) in response to the neovasculature or to the low extracellular pH in tumours. Thus, we have established non-toxic, fluorescent nanoreporters that can nonlinearly amplify tumour microenvironmental signals, permitting the identification of tumour tissue independently of histological type or driver mutation, and detection of acute treatment responses much more rapidly than conventional imaging approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A schematic of imaging the tumour microenvironment using UPS nanoprobes.
Figure 2: Synthesis and characterization of UPS nanoprobes.
Figure 3: UPSe nanoprobes can specifically image acidic tumour pHe.
Figure 4: cRGD- UPSi nanoprobes can specifically image angiogenic tumour vasculature.
Figure 5: iUPS nanoprobes target both acidic pHe and tumour vasculature with broad tumour specificity.

Similar content being viewed by others

References

  1. Stuart, M. A. et al. Emerging applications of stimuli-responsive polymer materials. Nature Mater. 9, 101–113 (2010).

    Article  Google Scholar 

  2. De Las Heras Alarcon, C., Pennadam, S. & Alexander, C. Stimuli responsive polymers for biomedical applications. Chem. Soc. Rev. 34, 276–285 (2005).

    Article  Google Scholar 

  3. Von Maltzahn, G. et al. Nanoparticles that communicate in vivo to amplify tumour targeting. Nature Mater. 10, 545–552 (2011).

    Article  CAS  Google Scholar 

  4. Bellomo, E. G., Wyrsta, M. D., Pakstis, L., Pochan, D. J. & Deming, T. J. Stimuli-responsive polypeptide vesicles by conformation-specific assembly. Nature Mater. 3, 244–248 (2004).

    Article  CAS  Google Scholar 

  5. Welsher, K. et al. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nature Nanotech. 4, 773–780 (2009).

    Article  CAS  Google Scholar 

  6. So, M. K., Xu, C., Loening, A. M., Gambhir, S. S. & Rao, J. Self-illuminating quantum dot conjugates for in vivo imaging. Nature Biotechnol. 24, 339–343 (2006).

    Article  CAS  Google Scholar 

  7. Kircher, M. F. et al. A brain tumour molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nature Med. 18, 829–834 (2012).

    Article  CAS  Google Scholar 

  8. Qian, X. et al. In vivo tumour targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nature Biotechnol. 26, 83–90 (2008).

    Article  CAS  Google Scholar 

  9. Olson, E. S. et al. Activatable cell penetrating peptides linked to nanoparticles as dual probes for in vivo fluorescence and MR imaging of proteases. Proc. Natl Acad. Sci. USA 107, 4311–4316 (2010).

    Article  CAS  Google Scholar 

  10. Urano, Y. et al. Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes. Nature Med. 15, 104–109 (2009).

    Article  CAS  Google Scholar 

  11. Van Dam, G. M. et al. Intraoperative tumour-specific fluorescence imaging in ovarian cancer by folate receptor- α targeting: First in-human results. Nature Med. 17, 1315–1319 (2011).

    Article  CAS  Google Scholar 

  12. Ke, S. et al. Near-infrared optical imaging of epidermal growth factor receptor in breast cancer xenografts. Cancer Res. 63, 7870–7875 (2003).

    CAS  Google Scholar 

  13. Paik, S. et al. HER2 and choice of adjuvant chemotherapy for invasive breast cancer: National surgical adjuvant breast and bowel project protocol B-15. J. Natl Cancer Inst. 92, 1991–1998 (2000).

    Article  CAS  Google Scholar 

  14. Jacobs, T. W., Gown, A. M., Yaziji, H., Barnes, M. J. & Schnitt, S. J. HER-2/neu protein expression in breast cancer evaluated by immunohistochemistry. A study of interlaboratory agreement. Am. J. Clin. Pathol. 113, 251–258 (2000).

    Article  CAS  Google Scholar 

  15. Weis, S. M. & Cheresh, D. A. Tumour angiogenesis: Molecular pathways and therapeutic targets. Nature Med. 17, 1359–1370 (2011).

    Article  CAS  Google Scholar 

  16. Folkman, J. Angiogenesis: An organizing principle for drug discovery? Nature Rev. Drug Discov. 6, 273–286 (2007).

    Article  CAS  Google Scholar 

  17. Webb, B. A., Chimenti, M., Jacobson, M. P. & Barber, D. L. Dysregulated pH: A perfect storm for cancer progression. Nature Rev. Cancer 11, 671–677 (2011).

    Article  CAS  Google Scholar 

  18. Zhou, K. et al. Tunable, ultrasensitive pH-responsive nanoparticles targeting specific endocytic organelles in living cells. Angew. Chem. Int. Ed. 50, 6109–6114 (2011).

    Article  CAS  Google Scholar 

  19. Bachelder, E. M., Beaudette, T. T., Broaders, K. E., Dashe, J. & Frechet, J. M. Acetal-derivatized dextran: An acid-responsive biodegradable material for therapeutic applications. J. Am. Chem. Soc. 130, 10494–10495 (2008).

    Article  CAS  Google Scholar 

  20. Bae, Y., Fukushima, S., Harada, A. & Kataoka, K. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: Polymeric micelles that are responsive to intracellular pH change. Angew. Chem. Int. Ed. 42, 4640–4643 (2003).

    Article  CAS  Google Scholar 

  21. Griset, A. P. et al. Expansile nanoparticles: Synthesis, characterization, and in vivo efficacy of an acid-responsive polymeric drug delivery system. J. Am. Chem. Soc. 131, 2469–2471 (2009).

    Article  CAS  Google Scholar 

  22. Lee, E. S., Na, K. & Bae, Y. H. Super pH-sensitive multifunctional polymeric micelle. Nano Lett. 5, 325–329 (2005).

    Article  CAS  Google Scholar 

  23. Potineni, A., Lynn, D. M., Langer, R. & Amiji, M. M. Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive biodegradable system for paclitaxel delivery. J. Control. Release 86, 223–234 (2003).

    Article  CAS  Google Scholar 

  24. Zhou, K. et al. Multicolored pH-tunable and activatable fluorescence nanoplatform responsive to physiologic pH stimuli. J. Am. Chem. Soc. 134, 7803–7811 (2012).

    Article  CAS  Google Scholar 

  25. Sonveaux, P. et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J. Clin. Invest. 118, 3930–3942 (2008).

    CAS  Google Scholar 

  26. Maeda, H., Wu, J., Sawa, T., Matsumura, Y. & Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J. Control. Release 65, 271–284 (2000).

    Article  CAS  Google Scholar 

  27. Gatenby, R. A. & Gillies, R. J. Why do cancers have high aerobic glycolysis? Nature Rev. Cancer 4, 891–899 (2004).

    Article  CAS  Google Scholar 

  28. Kleiter, M. M. et al. A comparison of oral and intravenous pimonidazole in canine tumors using intravenous CCI-103F as a control hypoxia marker. Int. J. Radiat. Oncol. Biol. Phys. 64, 592–602 (2006).

    Article  CAS  Google Scholar 

  29. Huang, X. et al. A reexamination of active and passive tumor targeting by using rod-shaped gold nanocrystals and covalently conjugated peptide ligands. ACS Nano 4, 5887–5896 (2010).

    Article  CAS  Google Scholar 

  30. Moghimi, S. M., Hedeman, H., Muir, I. S., Illum, L. & Davis, S. S. An investigation of the filtration capacity and the fate of large filtered sterically-stabilized microspheres in rat spleen. Biochim. Biophys. Acta 1157, 233–240 (1993).

    Article  CAS  Google Scholar 

  31. Polyak, K. Heterogeneity in breast cancer. J. Clin. Invest. 121, 3786–3788 (2011).

    Article  CAS  Google Scholar 

  32. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Article  CAS  Google Scholar 

  33. Dhanabal, M. et al. Endostatin induces endothelial cell apoptosis. J. Biol. Chem. 274, 11721–11726 (1999).

    Article  CAS  Google Scholar 

  34. Folkman, J. What is the evidence that tumors are angiogenesis dependent? J. Natl Cancer Inst. 82, 4–6 (1990).

    Article  CAS  Google Scholar 

  35. Nasongkla, N. et al. Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett. 6, 2427–2430 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the NIH (R01EB013149 and R01CA129011) and Cancer Prevention and Research Institute of Texas (RP120094). Animal imaging work is supported by the UT Southwestern Small Animal Imaging Resource Grant (U24 CA126608) and Simmons Cancer Center Support Grant (P30 CA142543). We thank H. Zhou for help with the Maestro imaging, X. Luo for assistance with animal handling, and J. T. Hsieh and L. Gandee for help with histology.

Author information

Authors and Affiliations

Authors

Contributions

Y.W. and J.G. are responsible for all phases of the research; K.Z., G.H., X.H., X.M. and T.Z. helped with synthesis of different dye-conjugated polymers and characterization of UPS nanoprobes; C.H. and R.J.D. designed metabolic inhibition experiments and performed in vitro cell studies; R.J.D. supplied the transgenic MMTV-PyMT breast tumour model; B.D.S. guided the preclinical development of the experiments. Y.W. and G.H. wrote the initial draft. R.J.D., B.D.S. and J.G. revised the final draft.

Corresponding author

Correspondence to Jinming Gao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 6173 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Zhou, K., Huang, G. et al. A nanoparticle-based strategy for the imaging of a broad range of tumours by nonlinear amplification of microenvironment signals. Nature Mater 13, 204–212 (2014). https://doi.org/10.1038/nmat3819

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3819

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing