Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Local electrostatic imaging of striped domain order in LaAlO3/SrTiO3

Abstract

The emerging field of complex oxide interfaces is generically built on one of the most celebrated substrates—strontium titanate (SrTiO3). This material hosts a range of phenomena, including ferroelasticity, incipient ferroelectricity, and most puzzlingly, contested giant piezoelectricity. Although these properties may markedly influence the oxide interfaces, especially on microscopic length scales, the lack of local probes capable of studying such buried systems has left their effects largely unexplored. Here we use a scanning charge detector—a nanotube single-electron transistor—to non-invasively image the electrostatic landscape and local mechanical response in the prototypical LaAlO3/SrTiO3 system with unprecedented sensitivity. Our measurements reveal that on microscopic scales SrTiO3 exhibits large anomalous piezoelectricity with curious spatial dependence. Through electrostatic imaging we unravel the microscopic origin for this extrinsic piezoelectricity, demonstrating its direct, quantitative connection to the motion of locally ordered tetragonal domains under applied gate voltage. These domains create striped potential modulations that can markedly influence the two-dimensional electron system at the conducting interface. Our results have broad implications to all complex oxide interfaces built on SrTiO3 and demonstrate the importance of microscopic structure to the physics of electrons at the LaAlO3/SrTiO3 interface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nanotube-based SET imaging.
Figure 2: Measurements of the local piezoelectric response.
Figure 3: Observation of tetragonal domains within STO.
Figure 4: Gate-induced domain motion.
Figure 5: Domain potential and influence on the LAO/STO 2DEG.

Similar content being viewed by others

References

  1. Ohtomo, A. & Hwang, H. Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423–426 (2004).

    Article  CAS  Google Scholar 

  2. Thiel, S., Hammerl, G., Schmehl, A., Schneider, C. W. & Mannhart, J. Tunable quasi-two-dimensional electron gases in oxide heterostructures. Science 313, 1942–1945 (2006).

    Article  CAS  Google Scholar 

  3. Reyren, N. et al. Superconducting interfaces between insulating oxides. Science 317, 1196–1199 (2007).

    Article  CAS  Google Scholar 

  4. Caviglia, A. D. et al. Electric field control of the LaAlO3/SrTiO3 interface ground state. Nature 456, 624–627 (2008).

    Article  CAS  Google Scholar 

  5. Brinkman, A. et al. Magnetic effects at the interface between non-magnetic oxides. Nature Mater. 6, 493–496 (2007).

    Article  CAS  Google Scholar 

  6. Ariando, et al. Electronic phase separation at the LaAlO3/SrTiO3 interface. Nature Commun. 2, 188 (2011).

    Article  CAS  Google Scholar 

  7. Dikin, D. et al. Coexistence of superconductivity and ferromagnetism in two dimensions. Phys. Rev. Lett. 107, 056802 (2011).

    Article  CAS  Google Scholar 

  8. Li, L., Richter, C., Mannhart, J. & Ashoori, R. C. Coexistence of magnetic order and two-dimensional superconductivity at LaAlO3/SrTiO3 interfaces. Nature Phys. 7, 762–766 (2011).

    Article  CAS  Google Scholar 

  9. Bert, J. A. et al. Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface. Nature Phys. 7, 767–771 (2011).

    Article  CAS  Google Scholar 

  10. Fleury, P., Scott, J. & Worlock, J. Soft phonon modes and the 110 °K phase transition in SrTiO3 . Phys. Rev. Lett. 21, 16–19 (1968).

    Article  CAS  Google Scholar 

  11. Müller, K. & Burkard, H. SrTiO3: An intrinsic quantum paraelectric below 4 K. Phys. Rev. B 19, 3593–3602 (1979).

    Article  Google Scholar 

  12. Grupp, D. E. & Goldman, A. M. Giant piezoelectric effect in strontium titanate at cryogenic temperatures. Science 276, 392–394 (1997).

    Article  CAS  Google Scholar 

  13. Zhang, J. X. et al. Large field-induced strains in a lead-free piezoelectric material. Nature Nanotech. 6, 98–102 (2011).

    Article  CAS  Google Scholar 

  14. Damodaran, A. R. et al. Nanoscale structure and mechanism for enhanced electromechanical response of highly strained BiFeO3 thin films. Adv. Mater. 23, 3170–3175 (2011).

    Article  CAS  Google Scholar 

  15. Breitschaft, M. et al. Two-dimensional electron liquid state at LaAlO3/SrTiO3 interfaces. Phys. Rev. B 81, 153414 (2010).

    Article  Google Scholar 

  16. Bi, F. et al. Electro-mechanical response of top-gated LaAlO3/SrTiO3 heterostructures. Preprint at http://arxiv.org/abs/1302.0204 (2013).

  17. Catalan, G., Seidel, J., Ramesh, R. & Scott, J. F. Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119–156 (2012).

    Article  CAS  Google Scholar 

  18. Tinkl, V., Breitschaft, M., Richter, C. & Mannhart, J. Large negative electronic compressibility of LaAlO3/SrTiO3 interfaces with ultrathin LaAlO3 layers. Phys. Rev. B 86, 075116 (2012).

    Article  Google Scholar 

  19. Yoo, M. J. et al. Scanning single-electron transistor microscopy: imaging individual charges. Science 276, 579–582 (1997).

    Article  CAS  Google Scholar 

  20. Ilani, S. et al. The microscopic nature of localization in the quantum Hall effect. Nature 427, 328–332 (2004).

    Article  CAS  Google Scholar 

  21. Waissman, J. et al. Realization of pristine and locally tunable one-dimensional electron systems in carbon nanotubes. Nature Nanotech. 8, 569–574 (2013).

    Article  CAS  Google Scholar 

  22. Sakudo, T. & Unoki, H. Dielectric properties of SrTiO3 at low temperatures. Phys. Rev. Lett. 26, 851–853 (1971).

    Article  CAS  Google Scholar 

  23. Dec, J., Kleemann, W. & Itoh, M. Electric-field-induced ferroelastic single domaining of SrTi18O3 . Appl. Phys. Lett. 85, 5328 (2004).

    Article  CAS  Google Scholar 

  24. Zubko, P., Catalan, G., Buckley, A., Welche, P. & Scott, J. Strain-gradient-induced polarization in SrTiO3 single crystals. Phys. Rev. Lett. 99, 167601 (2007).

    Article  CAS  Google Scholar 

  25. Morozovska, A. N., Eliseev, E. A., Glinchuk, M. D., Chen, L-Q. & Gopalan, V. Interfacial polarization and pyroelectricity in antiferrodistortive structures induced by a flexoelectric effect and rotostriction. Phys. Rev. B 85, 094107 (2012).

    Article  Google Scholar 

  26. Scott, J., Salje, E. & Carpenter, M. Domain wall damping and elastic softening in SrTiO3: evidence for polar twin walls. Phys. Rev. Lett. 109, 187601 (2012).

    Article  CAS  Google Scholar 

  27. Liu, M., Finlayson, T. & Smith, T. High-resolution dilatometry measurements of SrTiO3 along cubic and tetragonal axes. Phys. Rev. B 55, 3480–3484 (1997).

    Article  CAS  Google Scholar 

  28. Ben Shalom, M. et al. Anisotropic magnetotransport at the SrTiO3/LaAlO3 interface. Phys. Rev. B 80, 140403 (2009).

    Article  Google Scholar 

  29. Joshua, A., Ruhman, J., Pecker, S., Altman, E. & Ilani, S. Gate-tunable polarized phase of two-dimensional electrons at the LaAlO3/SrTiO3 interface. Proc. Natl Acad. Sci. USA 110, 9633–9638 (2012).

    Article  Google Scholar 

  30. Fête, A., Gariglio, S., Caviglia, A. D., Triscone, J-M. & Gabay, M. Rashba induced magnetoconductance oscillations in the LaAlO3/SrTiO3 heterostructure. Phys. Rev. B 86, 201105 (2012).

    Article  Google Scholar 

  31. Bell, C. et al. Dominant mobility modulation by the electric field effect at the LaAlO3/SrTiO3 interface. Phys. Rev. Lett. 103, 25–28 (2009).

    Article  Google Scholar 

  32. Seidel, J. et al. Conduction at domain walls in oxide multiferroics. Nature Mater. 8, 229–234 (2009).

    Article  CAS  Google Scholar 

  33. Kalisky, B. et al. Locally enhanced conductivity due to the tetragonal domain structure in LaAlO3/SrTiO3 heterointerfaces. Nature Mater.http://dx.doi.org/10.1038/nmat3753 (2013).

  34. Jalan, B., Allen, S. J., Beltz, G. E., Moetakef, P. & Stemmer, S. Enhancing the electron mobility of SrTiO3 with strain. Appl. Phys. Lett. 98, 132102 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge S. Gariglio and J.-M. Triscone for providing the samples and for useful discussions and comments on the manuscript. We thank Y. Yacoby, B. Kalisky, E. Berg, E. Altman, P. Paruch, J. Ruhman, P. Zubko, L. Yu and A. Zunger for helpful discussions. We note that a previous experiment using a complementary scanning superconducting quantum interference device technique33 has observed enhanced conductivity due to tetragonal domain structure at this oxide interface. S.I. acknowledges financial support by the Israel Science Foundation (No. 1267/12), the Minerva Foundation, the ERC Starting Grant (QUANT-DES-CNT, No. 258753), and the Marie Curie People Grant (IRG, No. 239322).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Sulpizio.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1552 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Honig, M., Sulpizio, J., Drori, J. et al. Local electrostatic imaging of striped domain order in LaAlO3/SrTiO3. Nature Mater 12, 1112–1118 (2013). https://doi.org/10.1038/nmat3810

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3810

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing