Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Wetting translucency of graphene

For the case of water on supported graphene, about 30% of the van der Waals interactions between the water and the substrate are transmitted through the one-atom-thick layer.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Shape of a water droplet on graphitic surfaces.
Figure 2: Practical strategy for increasing the contact angle of water on a graphene-coated superhydrophobic substrate.

References

  1. Novoselov, K. S. et al. Science 306, 666–669 (2004).

    CAS  Google Scholar 

  2. Geim, A. K. & Novoselov, K. S. Nature Mater. 6, 183–191 (2007).

    Article  CAS  Google Scholar 

  3. Bae, S. et al. Nature Nanotech. 5, 574–578 (2010).

    Article  CAS  Google Scholar 

  4. Israelachvili, J. N. Intermolecular and Surface Forces (Academic, 2011).

    Google Scholar 

  5. Postma, H. W. C. Nano Lett. 10, 420–425 (2010).

    Article  CAS  Google Scholar 

  6. Cohen-Tanugi, D. & Grossman, J. C. Nano Lett. 12, 3602–3608 (2012).

    Article  CAS  Google Scholar 

  7. Garaj, S. et al. Nature 467, 190–193 (2010).

    Article  CAS  Google Scholar 

  8. O'Hern, S. C. et al. ACS Nano 6, 10130–10138 (2012).

    Article  CAS  Google Scholar 

  9. Lee, C., Wei, X. D., Kysar, J. W. & Hone, J. Science 321, 385–388 (2008).

    Article  CAS  Google Scholar 

  10. Bolotin, K. I. et al. Solid State Commun. 146, 351–355 (2008).

    Article  CAS  Google Scholar 

  11. Reina, A. et al. Nano Lett. 9, 3087–3087 (2009).

    Article  CAS  Google Scholar 

  12. Rafiee, J. et al. Nature Mater. 11, 217–222 (2012).

    Article  CAS  Google Scholar 

  13. Shin, Y. J. et al. Langmuir 26, 3798–3802 (2010).

    Article  CAS  Google Scholar 

  14. Raj, R., Maroo, S. C. & Wang, E. N. Nano Lett. 13, 1509–1515 (2013).

    Article  CAS  Google Scholar 

  15. Benedict, L. X. et al. Chem. Phys. Lett. 286, 490–496 (1998).

    Article  CAS  Google Scholar 

  16. Girifalco, L. A. & Lad, R. A. J. Chem. Phys. 25, 693–697 (1956).

    Article  CAS  Google Scholar 

  17. Zacharia, R., Ulbricht, H. & Hertel, T. Phys. Rev. B 69, 155406 (2004).

    Article  Google Scholar 

  18. Girifalco, L. A., Hodak, M. & Lee, R. S. Phys. Rev. B 62, 13104–13110 (2000).

    Article  CAS  Google Scholar 

  19. Wehling, T. O. et al. Nano Lett. 8, 173–177 (2008).

    Article  CAS  Google Scholar 

  20. Zhou, H. et al. Phys. Rev. B 85, 035406 (2012).

    Article  Google Scholar 

  21. Wintterlin, J. & Bocquet, M. L. Surf. Sci. 603, 1841–1852 (2009).

    Article  CAS  Google Scholar 

  22. Li, X. et al. Phys. Rev. B 85, 085425 (2012).

    Article  Google Scholar 

  23. Feng, X. F., Maier, S. & Salmeron, M. J. Am. Chem. Soc. 134, 5662–5668 (2012).

    Article  CAS  Google Scholar 

  24. Shih, C. J. et al. Phys. Rev. Lett. 109, 176101 (2012).

    Article  Google Scholar 

  25. De Coninck, J. & Blake, T. D. Annu. Rev. Mater. Res. 38, 1–22 (2008).

    Article  CAS  Google Scholar 

  26. Taherian, F., Marcon, V., van der Vegt, N. F. A. & Leroy, F. Langmuir 29, 1457–1465 (2013).

    Article  CAS  Google Scholar 

  27. Zhang, L. M. et al. Nature Commun. 4, 2464 (2013).

    Article  Google Scholar 

  28. Singh, E. et al. ACS Nano 7, 3512–3521 (2013).

    Article  CAS  Google Scholar 

  29. Wang, Q. H. et al. Nature Chem. 4, 724–732 (2012).

    Article  CAS  Google Scholar 

  30. Adam, S., Hwang, E. H., Galitski, V. M. & Das Sarma, S. Proc. Natl Acad. Sci. USA 104, 18392–18397 (2007).

    Article  CAS  Google Scholar 

  31. Li, Z. et al. Nature Mater. 12, 925–931 (2013).

    Article  CAS  Google Scholar 

  32. Lui, C. H., Liu, L., Mak, K. F., Flynn, G. W. & Heinz, T. F. Nature 462, 339–341 (2009).

    Article  CAS  Google Scholar 

  33. Lebegue, S. et al. Phys. Rev. Lett. 105, 196401 (2010).

    Article  CAS  Google Scholar 

  34. Spanu, L., Sorella, S. & Galli, G. Phys. Rev. Lett. 103, 196401 (2009).

    Article  Google Scholar 

  35. Kim, H. Y., Sofo, J. O., Velegol, D., Cole, M. W. & Lucas, A. A. J. Chem. Phys. 124, 074504 (2006).

    Article  Google Scholar 

  36. Dobson, J. F., White, A. & Rubio, A. Phys. Rev. Lett. 96, 073201 (2006).

    Article  Google Scholar 

  37. Ma, J. et al. Phys. Rev. B 84, 033402 (2011).

    Article  Google Scholar 

  38. Jenness, G. R., Karalti, O. & Jordan, K. D. Phys. Chem. Chem. Phys. 12, 6375–6381 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Raj, G. Rutledge and J. Kong for useful discussions. This work has been supported by ONR-MURI, NSF and MIT ISN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Blankschtein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shih, CJ., Strano, M. & Blankschtein, D. Wetting translucency of graphene. Nature Mater 12, 866–869 (2013). https://doi.org/10.1038/nmat3760

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3760

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing