Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Valleytronics

Electrons dance in diamond

Subjects

A Correction to this article was published on 21 November 2013

This article has been updated

In addition to manipulating the charge or spin of electrons, another way to control electric current is by using the 'valley' degree-of-freedom of electrons. The first demonstration of the generation, transport and detection of valley-polarized electrons in bulk diamond now opens up new opportunities for quantum control in electronic devices.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electronic band diagrams of diamond.

Change history

  • 30 October 2013

    In the version of the News & Views article 'Valleytronics: Electrons dance in diamond' originally published (Nature Mater. 12, 690–691; 2013) short excerpts have been duplicated without proper attribution from a published article (K. Behnia, Nature Nanotech. 7, 488–489; 2012). The author apologizes for the confusion caused. Corrected after print 30 October 2013.

References

  1. Dyakonov, M. I. Physica E 35, 246–250 (2006).

    Article  Google Scholar 

  2. Rycerz, A., Tworzydlo, J. & Beenakker, C. W. J. Nature Phys. 3, 172–175 (2007).

    Article  CAS  Google Scholar 

  3. Xiao, D., Yao, W. & Niu, Q. Phys. Rev. Lett. 99, 236809 (2007).

    Article  Google Scholar 

  4. Akhmerov, A. R. & Beenakker, C. W. J. Phys. Rev. Lett. 98, 157003 (2007).

    Article  CAS  Google Scholar 

  5. Bishop, N. C. et al. Phys. Rev. Lett. 98, 266404 (2007).

    Article  CAS  Google Scholar 

  6. Zhu, Z. W., Collaudin, A., Fauque, B., Kang, W. & Behnia, K. Nature Phys. 8, 89–94 (2012).

    Article  CAS  Google Scholar 

  7. Zeng, H. L., Dai, J. F., Yao, W., Xiao, D. & Cui, X. D. Nature Nanotech. 7, 490–493 (2012).

    Article  CAS  Google Scholar 

  8. Mak, K. F., He, K. L., Shan, J. & Heinz, T. F. Nature Nanotech. 7, 494–498 (2012).

    Article  CAS  Google Scholar 

  9. Cao, T. et al. Nature Commun. 3, 887 (2012).

    Article  Google Scholar 

  10. Isberg, J. et al. Nature Mater. 12, 760–764 (2013).

    Article  CAS  Google Scholar 

  11. Balasubramanian, G. et al. Nature Mater. 8, 383–387 (2009).

    Article  CAS  Google Scholar 

  12. Jelezko, F. & Wrachtrup, J. New J. Phys. 14, 105024–105026 (2012).

    Article  Google Scholar 

  13. Löfas, H., Grigoriev, A., Isberg, J. & Ahuja, R. AIP Advances 1, 032139 (2011).

    Article  Google Scholar 

  14. Pavone, P. et al. Phys. Rev. B 48, 3156–3163 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph E. Nebel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nebel, C. Electrons dance in diamond. Nature Mater 12, 690–691 (2013). https://doi.org/10.1038/nmat3724

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3724

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing