Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Thermoelectric imaging of structural disorder in epitaxial graphene

Abstract

Heat is a familiar form of energy transported from a hot side to a colder side of an object, but not a notion associated with microscopic measurements of electronic properties. A temperature difference within a material causes charge carriers, electrons or holes to diffuse along the temperature gradient inducing a thermoelectric voltage. Here we show that local thermoelectric measurements can yield high-sensitivity imaging of structural disorder on the atomic and nanometre scales. The thermopower measurement acts to amplify the variations in the local density of states at the Fermi level, giving high differential contrast in thermoelectric signals. Using this imaging technique, we uncovered point defects in the first layer of epitaxial graphene, which generate soliton-like domain-wall line patterns separating regions of the different interlayer stacking of the second graphene layer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thermoelectric imaging and its application to epitaxial graphene.
Figure 2: Evolution of strain-response patterns in epitaxial graphene.
Figure 3: Thermoelectric imaging at the atomic scale.
Figure 4: Local defect investigation by thermoelectric imaging.
Figure 5: Spectroscopic measurements of the thermoelectric voltage from various graphene samples as a function of applied temperature difference.

Similar content being viewed by others

References

  1. Freund, L. B. & Suresh, S. Thin Film Materials: Stress, Defect Formation and Surface Evolution (Cambridge Univ. Press, 2004).

    Book  Google Scholar 

  2. Ziman, J. M. Electrons and Phonons 220–256 (Oxford Univ. Press, 1960).

    Google Scholar 

  3. Stroscio, J. A. & Kaiser, W. J. (eds) in Scanning Tunneling Microscopy (Academic, 1993).

  4. Lin, Y-M. et al. 100-GHz transistors from wafer-scale epitaxial graphene. Science 327, 662 (2008).

    Article  Google Scholar 

  5. Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Mater. 8, 203–207 (2009).

    Article  CAS  Google Scholar 

  6. Banhart, F., Kotakoski, J. & Krasheninnikov, A. V. Structural defects in graphene. ACS Nano 5, 26–41 (2011).

    Article  CAS  Google Scholar 

  7. Schmidt, D. A., Ohta, T. & Beechem, T. E. Strain and charge carrier coupling in epitaxial graphene. Phys. Rev. B 84, 235422 (2011).

    Article  Google Scholar 

  8. Ferralis, N., Maboudian, R. & Carraro, C. Evidence of structural strain in epitaxial graphene layers on 6H–SiC(0001). Phys. Rev. Lett. 101, 156801 (2008).

    Article  Google Scholar 

  9. Warner, J. H. et al. Dislocation-driven deformations in graphene. Science 337, 209–212 (2012).

    Article  CAS  Google Scholar 

  10. Yazyev, O. V. & Louie, S. G. Topological defects in graphene: Dislocations and grain boundaries. Phys. Rev. B 81, 195420 (2010).

    Article  Google Scholar 

  11. Guinea, F., Katsnelson, M. I. & Geim, A. K. Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nature Phys. 6, 30–33 (2010).

    Article  CAS  Google Scholar 

  12. Klimov, N. N. et al. Electromechanical properties of graphene drumheads. Science 336, 1557–1561 (2012).

    Article  CAS  Google Scholar 

  13. Reddy, P., Jang, S-Y., Segalman, R. A. & Majumdar, A. Thermoelectricity in molecular junctions. Science 315, 1568–1571 (2007).

    Article  CAS  Google Scholar 

  14. Mahan, G. D. & Sofo, J. O. The best thermoelectric. Proc. Natl Acad. Sci. USA 93, 7436–7439 (1996).

    Article  CAS  Google Scholar 

  15. Stovneng, J. A. & Lipavsky, P. Thermopower in scanning-tunneling-microscope experiments. Phys. Rev. B 42, 9214–9216 (1990).

    Article  CAS  Google Scholar 

  16. Lyeo, H-K. et al. Profiling the thermoelectric power of semiconductor junctions with nanometer resolution. Science 303, 816–818 (2004).

    Article  CAS  Google Scholar 

  17. Hoffmann, D., Grand, J. Y., Möller, R., Rettenberger, A. & Läuger, K. Thermovoltage across a vacuum barrier investigated by scanning tunneling microscopy: Imaging of standing electron waves. Phys. Rev. B 52, 13796–13798 (1995).

    Article  CAS  Google Scholar 

  18. Bian, Z. et al. Three-dimensional modeling of nanoscale Seebeckmeasurements by scanning thermoelectric microscopy. Appl. Phys. Lett. 87, 053115 (2005).

    Article  Google Scholar 

  19. Gunther, C., Vrijmoeth, J., Hwang, R. Q. & Behm, R. J. Strain relaxation in hexagonally close-packed metal-metal interfaces. Phys. Rev. Lett. 74, 754–757 (1995).

    Article  CAS  Google Scholar 

  20. Lundgren, E., Stanka, B., Schmid, M. & Varga, P. Thin films of Co on Pt(111): Strain relaxation and growth. Phys. Rev. B 62, 2843–2851 (2000).

    Article  CAS  Google Scholar 

  21. Bao, W. et al. Stacking-dependent band gap and quantum transport in trilayer graphene. Nature Phys. 7, 948–952 (2011).

    Article  CAS  Google Scholar 

  22. Lui, C. H., Li, Z., Mak, K. F., Cappelluti, E. & Heinz, T. F. Observation of an electrically tunable band gap in trilayer graphene. Nature Phys. 7, 944–947 (2011).

    Article  CAS  Google Scholar 

  23. Choi, J. S. et al. Friction anisotropy-driven domain imaging on exfoliated monolayer graphene. Science 333, 607–610 (2011).

    Article  CAS  Google Scholar 

  24. Hibino, H., Mizuno, S., Kageshima, H., Nagase, M. & Yamaguchi, H. Stacking domains of epitaxial few-layer graphene on SiC(0001). Phys. Rev. B 80, 085406 (2009).

    Article  Google Scholar 

  25. Alden, J. S. et al. Strain solitons and topological defects in bilayer graphene. Proc. Natl Acad. Sci. Preprint at http://arxiv.org/abs/cond-mat/1304.7549 (2013).

  26. Berger, C. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006).

    Article  CAS  Google Scholar 

  27. Hicks, L. D. & Dresselhaus, M. S. Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 47, 16631–16634 (1993).

    Article  CAS  Google Scholar 

  28. Rutter, G. M. et al. Scattering and interference in epitaxial graphene. Science 317, 219–222 (2007).

    Article  CAS  Google Scholar 

  29. Rutter, G. M. et al. Imaging the interface of epitaxial graphene with silicon carbide via scanning tunneling microscopy. Phys. Rev. B 76, 235416 (2007).

    Article  Google Scholar 

  30. Gotsmann, B. & Lantz, M. A. Quantized thermal transport across contacts of rough surfaces. Nature Mater. 12, 59–65 (2013).

    Article  CAS  Google Scholar 

  31. Hashimoto, A., Suenaga, K., Gloter, A., Urita, K. & Iijima, S. Direct evidence for atomic defects in graphene layers. Nature 430, 870–873 (2004).

    Article  CAS  Google Scholar 

  32. Hao, L. & Lee, T. K. Thermopower of gapped bilayer graphene. Phys. Rev. B 81, 165445 (2010).

    Article  Google Scholar 

  33. Zuev, Y. M., Chang, W. & Kim, P. Thermoelectric and magnetothermoelectric transport measurements of graphene. Phys. Rev. Lett. 102, 096807 (2009).

    Article  Google Scholar 

  34. Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nature Mater. 6, 770–775 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Kuk for helpful comments. W. Kim thanks H-K. Lee and B-G. Park for their support in the experiments at Pohang Light Source II. This work was supported by the Converging Research Center Program of MEST (2012K001307) and the MEST-US Air Force Cooperation Program of NRF/MEST (2010-00303). The work at KAIST was supported by the WCU (R31-2008-000-10071-0) and NRF (2012-046191) programmes of MEST.

Author information

Authors and Affiliations

Authors

Contributions

S.C., S.D.K. and H-K.L. performed the experiments, collected and analysed the data, and prepared the manuscript. W.K., I.K., T.Z. and J.A.S. prepared and characterized the samples. E-S.L., S-J.W., K-J.K. and Y-H.K. conducted the calculations. H-D.K. and I.K. carried out the ARPES measurements. H-K.L. and Y-H.K. administrated the research. H-K.L., Y-H.K. and J.A.S. edited the manuscript.

Corresponding authors

Correspondence to Yong-Hyun Kim or Ho-Ki Lyeo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 953 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, S., Kang, S., Kim, W. et al. Thermoelectric imaging of structural disorder in epitaxial graphene. Nature Mater 12, 913–918 (2013). https://doi.org/10.1038/nmat3708

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3708

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing