Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reversible anionic redox chemistry in high-capacity layered-oxide electrodes

Abstract

Li-ion batteries have contributed to the commercial success of portable electronics and may soon dominate the electric transportation market provided that major scientific advances including new materials and concepts are developed. Classical positive electrodes for Li-ion technology operate mainly through an insertion–deinsertion redox process involving cationic species. However, this mechanism is insufficient to account for the high capacities exhibited by the new generation of Li-rich (Li1+xNiyCozMn(1−xyz)O2) layered oxides that present unusual Li reactivity. In an attempt to overcome both the inherent composition and the structural complexity of this class of oxides, we have designed structurally related Li2Ru1−ySnyO3 materials that have a single redox cation and exhibit sustainable reversible capacities as high as 230 mA h g−1. Moreover, they present good cycling behaviour with no signs of voltage decay and a small irreversible capacity. We also unambiguously show, on the basis of an arsenal of characterization techniques, that the reactivity of these high-capacity materials towards Li entails cumulative cationic (Mn+→M(n+1)+) and anionic (O2−→O22−) reversible redox processes, owing to the ds p hybridization associated with a reductive coupling mechanism. Because Li2MO3 is a large family of compounds, this study opens the door to the exploration of a vast number of high-capacity materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural aspects of the Li2Ru1−ySnyO3 solid solution.
Figure 2: Electrochemical performance of Li2Ru1−ySnyO3.
Figure 3: Li-driven structural behaviour on cycling.
Figure 4: Microscopy and Mössbauer measurements for spotting the evolution of Li2Ru1−ySnyO3 electrodes on cycling.
Figure 5: Detection of anionic redox species.
Figure 6: Reductive coupling mechanism, calculations accounting for superoxo-like species and measured oxygen release.

Similar content being viewed by others

References

  1. Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008).

    Article  CAS  Google Scholar 

  2. Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    Article  CAS  Google Scholar 

  3. Ohzuku, T. & Makimura, Y. Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chem. Lett. 30, 642–643 (2001).

    Article  Google Scholar 

  4. Yoshizawa, H. & Ohzuku, T. An application of lithium cobalt nickel manganese oxide to high-power and high-energy density lithium-ion batteries. J. Power Sources 174, 813–817 (2007).

    Article  CAS  Google Scholar 

  5. Thackeray, M. M., David, W. I. F., Bruce, P. G. & Goodenough, J. B. Lithium insertion in Manganese spinels. Mater. Res. Bull. 18, 461–472 (1983).

    Article  CAS  Google Scholar 

  6. Barpanda, P. et al. A 3.90 V iron-based fluorosulphate material for lithium-ion batteries crystallizing in the triplite structure. Nature Mater. 10, 772–779 (2011).

    Article  CAS  Google Scholar 

  7. Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188–1194 (1997).

    Article  CAS  Google Scholar 

  8. Johnson, C. S. et al. The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3 . (1−x)LiMn0.5Ni0.5O2 electrodes. Electrochem. Commun. 6, 1085–1091 (2004).

    Article  CAS  Google Scholar 

  9. Johnson, C. S., Li, N. C., Lefief, C., Vaughey, J. T. & Thackeray, M. M. Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3. (1−x)LiMn0.333Ni0.333Co0.333O2 (0 < x < 0.7). Chem. Mater. 20, 6095–6106 (2008).

    Article  CAS  Google Scholar 

  10. Thackeray, M. M., Johnson, C. S., Vaughey, J. T., Li, N. & Hackney, S. A. Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries. J. Mater. Chem. 15, 2257–2267 (2005).

    Article  CAS  Google Scholar 

  11. Thackeray, M. M., Kang, S. H., Johnson, C. S., Vaughey, J. T. & Hackney, S. A. Comments on the structural complexity of lithium-rich Li1+xM1−xO2 electrodes (M = Mn,Ni,Co) for lithium batteries. Electrochem. Commun. 8, 1531–1538 (2006).

    Article  CAS  Google Scholar 

  12. Hodeau, J. L., Marezio, M., Santoro, A. & Roth, R. S. Neutron profile refinement of the structures of Li2SnO3 and Li2ZrO3 . J. Solid State Chem. 45, 170–179 (1982).

    Article  CAS  Google Scholar 

  13. James, A. & Goodenough, J. B. Structure and bonding in lithium ruthenate, Li2RuO3 . J. Solid State Chem. 74, 287–294 (1988).

    Article  CAS  Google Scholar 

  14. Armstrong, A. R. et al. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode LiNi0.2Li0.2Mn0.6O2 . J. Amer. Chem. Soc. 128, 8694–8698 (2006).

    Article  CAS  Google Scholar 

  15. Koga, H. et al. Reversible oxygen participation to the redox processes revealed for Li1.20Mn0.54Co0.13Ni0.13O2 . J. Electrochem. Soc. 160, A786–A792 (2013).

    Article  CAS  Google Scholar 

  16. Koga, H. et al. Different oxygen redox participation for bulk and surface: A possible global explanation for the cycling mechanism of Li1.20Mn0.54Co0.13Ni0.13O2 . J. Power Sources 236, 250–258 (2013).

    Article  CAS  Google Scholar 

  17. Sathiya, M. et al. High performance Li2Ru1−yMnyO3 (0.2 < y < 0.8) cathode materials for rechargeable lithium-ion batteries: Their understanding. Chem. Mater. 25, 1121–1131 (2013).

    Article  CAS  Google Scholar 

  18. Xiao, R. J., Li, H. & Chen, L. Q. Density functional investigation on Li2MnO3 . Chem. Mater. 24, 4242–4251 (2012).

    Article  CAS  Google Scholar 

  19. Mori, D. et al. Synthesis, phase relation and electrical and electrochemical properties of ruthenium-substituted Li2MnO3 as a novel cathode material. J. Power Sources 196, 6934–6938 (2011).

    Article  CAS  Google Scholar 

  20. Tarakina, N. V. et al. Investigation of stacking disorder in Li2SnO3 . Z. Kristall. 375–380 (2009).

    Article  Google Scholar 

  21. Shannon, R. D. Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sec. A 32, 751–767 (1976).

    Article  Google Scholar 

  22. Kobayashi, H., Kanno, R., Kawamoto, Y., Tabuchi, M. & Nakamura, O. Physical properties of the de-lithiated Li2−xRuO3 with the layered structure. Solid State Ion. 86-8, 859–863 (1996).

    Article  Google Scholar 

  23. Teo, L. P., Buraidah, M. H., Nor, A. F. M. & Majid, S. R. Conductivity and dielectric studies of Li2SnO3 . Ionics 18, 655–665 (2012).

    Article  CAS  Google Scholar 

  24. Park, S. H., Sato, Y., Kim, J. K. & Lee, Y. S. Powder property and electrochemical characterization of Li2MnO3 material. Mater. Chem. Phys. 102, 225–230 (2007).

    Article  CAS  Google Scholar 

  25. Gu, M. et al. Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. ACS Nano 7, 760–767 (2013).

    Article  CAS  Google Scholar 

  26. Selwyn, L. S., McKinnon, W. R., Dahn, J. R. & Lepage, Y. Local environment of Li intercalated in Mo6SezS8−Z as probed using electrochemical methods. Phys. Rev. B 33, 6405–6414 (1986).

    Article  CAS  Google Scholar 

  27. Yabuuchi, N., Yoshii, K., Myung, S. T., Nakai, I. & Komaba, S. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3–LiCo1/3Ni1/3Mn1/3O2 . J. Amer. Chem. Soc. 133, 4404–4419 (2011).

    Article  CAS  Google Scholar 

  28. Dulac, J. Spinel compounds between ruthenium oxide RuO2 and some Transition Metal oxides. Bull. Soc. Fr. Mineral. Cr. 92, 487–488 (1969).

    CAS  Google Scholar 

  29. Nozik, A. J. Optical and electrical properties of Cd2SnO4—A defect semiconductor. Phys. Rev. B 6, 453–459 (1972).

    Article  CAS  Google Scholar 

  30. Singh, P. et al. Electronic structure, electrical and dielectric properties of BaSnO3 below 300 K. Jpn. J. Appl. Phys. 47, 3540–3545 (2008).

    Article  CAS  Google Scholar 

  31. Mouyane, M., Womes, M., Jumas, J. C., Olivier-Fourcade, J. & Lippens, P. E. Original electrochemical mechanisms of CaSnO3 and CaSnSiO5 as anode materials for Li-ion batteries. J. Solid State Chem. 184, 2877–2886 (2011).

    Article  CAS  Google Scholar 

  32. Manju, U., Awana, V. P. S., Kishan, H. & Sarma, D. D. X-ray photoelectron spectroscopy of superconducting RuSr2Eu1.5Ce0.5Cu2O10 and nonsuperconducting RuSr2EuCeCu2O10 . Phys. Rev. B 74, 245106 (2006).

    Article  Google Scholar 

  33. Lu, M. F., Deng, X. L., Waerenborgh, J. C., Wu, X. J. & Meng, J. Redox chemistry and magnetism of LaSrM0.5Ru0.5O4+/−δ (M = Co, Ni and Zn) Ruddlesden–Popper phases. Dalton Trans. 41, 11507–11518 (2012).

    Article  Google Scholar 

  34. Dupin, J. C., Gonbeau, D., Vinatier, P. & Levasseur, A. Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys. Chem. Chem. Phys. 2, 1319–1324 (2000).

    Article  CAS  Google Scholar 

  35. Fukuzumi, S. & Ohkubo, K. Quantitative evaluation of Lewis acidity of metal ions derived from the g values of ESR spectra of superoxide: Metal ion complexes in relation to the promoting effects in electron transfer reactions. Chem.-Eur. J. 6, 4532–4535 (2000).

    Article  CAS  Google Scholar 

  36. Rouxel, J. The importance of anions in redox-type chimie douce. Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 310, 1–4 (1998).

    Article  CAS  Google Scholar 

  37. Rouxel, J. Anion–cation redox competition and the formation of new compounds in highly covalent systems. Chem.-Eur. J. 2, 1053–1059 (1996).

    Article  CAS  Google Scholar 

  38. Rouxel, J. Design and chemical reactivity of low dimensional solids—some soft chemistry routes to new solids. Acs Symp. Ser. 499, 88–113 (1992).

    Article  CAS  Google Scholar 

  39. Bichat, M. P. et al. Redox-induced structural change in anode materials based on tetrahedral (MPn4)x− transition metal pnictides. Chem. Mater. 16, 1002–1013 (2004).

    Article  CAS  Google Scholar 

  40. Ceder, G. et al. Identification of cathode materials for lithium batteries guided by first-principles calculations. Nature 392, 694–696 (1998).

    Article  CAS  Google Scholar 

  41. Tarascon, J. M. et al. In situ structural and electrochemical study of Ni1−xCoxO2 metastable oxides prepared by soft chemistry. J. Solid State Chem. 147, 410–420 (1999).

    Article  CAS  Google Scholar 

  42. Graetz, J., Ahn, C. C., Yazami, R. & Fultz, B. An electron energy-loss spectrometry study of charge compensation in LiNi0.8Co0.2O2 . J. Phys. Chem. B 107, 2887–2891 (2003).

    Article  CAS  Google Scholar 

  43. Li, H., Wang, Z., Chen, L. & Huang, X. Research on advanced materials for Li-ion batteries. Adv. Mater. 21, 4593–4607 (2009).

    Article  Google Scholar 

  44. Zvereva, E. A. et al. A new layered triangular antiferromagnet Li4FeSbO6: Spin order, field-induced transitions and anomalous critical behavior. Dalton Trans. 42, 1550–1566 (2013).

    Article  CAS  Google Scholar 

  45. Rodriguez-Carvajal, J. Recent advances in magnetic-structure determination by neutron powder diffraction. Physica B 192, 55–69 (1993).

    Article  CAS  Google Scholar 

  46. Doyle, M., Newman, J. & Reimers, J. A quick method of measuring the capacity versus discharge rate for a dual lithium-ion insertion cell undergoing cycling. J. Power Sour. 52, 211–216 (1994).

    Article  CAS  Google Scholar 

  47. Cava, R. J. Schizophrenic electrons in ruthenium-based oxides. Dalton Trans. 2979–2987 (2004).

  48. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  49. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  50. Dedryvere, R. et al. Electrode/electrolyte interface reactivity in high-voltage spinel LiMn1.6Ni0.4O4/Li4Ti5O12 lithium-ion battery. J. Phys. Chem. C 114, 10999–11008 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Clot (ICG) and O. Eisenstein (ICG) for helpful discussions about the reductive elimination mechanism, Y. Klein (IMPMC) for discussions about Ru oxides and J-N. Chotard (LRCS) for discussions about crystal structures and X-ray diffraction.

Author information

Authors and Affiliations

Authors

Contributions

M.S., K.R., C.P.L. and A.S.P. carried out the synthesis, M.S. and J-M.T. conducted the electrochemical work and J-M.T. designed the research approach; G.R. analysed the crystal structures and diffraction patterns; H.V. collected and analysed the EPR spectra; M.T.S. collected and analysed the Mössbauer data; D.F. and D.G. collected and analysed the XPS spectra; W.W. performed the pressure cell experiments: M.B.H. and L.D. carried out the TEM studies: M-L.D. conducted the DFT calculations and developed the theoretical framework; M-L.D., G.R. and J-M.T. wrote the manuscript and all authors discussed the experiments and final manuscript.

Corresponding author

Correspondence to J-M. Tarascon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1474 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sathiya, M., Rousse, G., Ramesha, K. et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nature Mater 12, 827–835 (2013). https://doi.org/10.1038/nmat3699

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3699

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing