Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Spider silk

Webs measure up

The complete elastic response of a spider's orb web has been quantified by non-invasive light scattering, revealing important insights into the architecture, natural material use and mechanical properties of the web. This knowledge advances our understanding of the prey-catching process and the role of supercontraction therein.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A schematic diagram of a Nephila clavipes spider web model and its experimental investigation using Brillouin light scattering.
Figure 2: The deformation of a spider web under gravity loading as a result of water droplets in morning dew.

References

  1. Omenetto, F. G. & Kaplan, D. L. Science 329, 528–531 (2010).

    Article  CAS  Google Scholar 

  2. Gosline, J. M., Guerette, P. A., Ortlepp, C. S. & Savage, K. N. J. Exp. Biol. 202, 3295–3303 (1999).

    CAS  Google Scholar 

  3. Blackledge, T. A. et al. Proc. Natl Acad. Sci. USA 106, 5229–5234 (2009).

    Article  CAS  Google Scholar 

  4. Swanson, B. O., Anderson, S. P., DiGiovine, C., Ross, R. N. & Dorsey, J. P. Integr. Comparative Biol. 49, 21–31 (2009).

    Article  CAS  Google Scholar 

  5. Cranford, S. W., Tarakanova, A., Pugno, N. M. & Buehler, M. J. Nature 482, 72–76 (2012).

    Article  CAS  Google Scholar 

  6. Arrhenius, S., Granstrom, H., Hirsch, N., Kastner, J. & Obrist, H. U. Tomas Saraceno: 14 Billions (Skira Editore, 2012).

    Google Scholar 

  7. Nova, A., Keten, S., Pugno, N. M., Redaelli, A. & Buehler, M. J. Nano Lett. 10, 2626–2634 (2010).

    Article  CAS  Google Scholar 

  8. Eisoldt, L., Smith, A. & Scheibel, T. Mater. Today 14, 80–86 (March, 2011).

    Article  CAS  Google Scholar 

  9. Sahni, V., Harris, J., Blackledge, T. A. & Dhinojwala, A. Nature Commun. 3, 1106 (2012).

    Article  Google Scholar 

  10. Koski, K. J., Akhenblit, P., McKiernan, K. & Yarger, J. L. Nature Mater. 12, 262–267 (2013).

    Article  CAS  Google Scholar 

  11. Work, R. W. & Morosoff, N. Tex. Res. J. 52, 349–356 (1982).

    Article  CAS  Google Scholar 

  12. Blamires, S. J., Chao, Y. C., Liao, C. P. & Tso, I. M. Anim. Behav. 81, 955–961 (2011).

    Article  Google Scholar 

  13. Termonia, Y. Macromolecules 27, 7378–7381 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus J. Buehler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, Z., Buehler, M. Webs measure up. Nature Mater 12, 185–187 (2013). https://doi.org/10.1038/nmat3578

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3578

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research