Abstract
Photocurrent generation in organic photovoltaics (OPVs) relies on the dissociation of excitons into free electrons and holes at donor/acceptor heterointerfaces. The low dielectric constant of organic semiconductors leads to strong Coulomb interactions between electron–hole pairs that should in principle oppose the generation of free charges. The exact mechanism by which electrons and holes overcome this Coulomb trapping is still unsolved, but increasing evidence points to the critical role of hot charge-transfer (CT) excitons in assisting this process. Here we provide a real-time view of hot CT exciton formation and relaxation using femtosecond nonlinear optical spectroscopies and non-adiabatic mixed quantum mechanics/molecular mechanics simulations in the phthalocyanine–fullerene model OPV system. For initial excitation on phthalocyanine, hot CT excitons are formed in 10−13 s, followed by relaxation to lower energies and shorter electron–hole distances on a 10−12 s timescale. This hot CT exciton cooling process and collapse of charge separation sets the fundamental time limit for competitive charge separation channels that lead to efficient photocurrent generation.
Access options
Subscribe to Journal
Get full journal access for 1 year
70,80 €
only 5,90 € per issue
All prices include VAT for France.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.
References
- 1.
Brédas, J-L., Norton, J. E., Cornil, J. & Coropceanu, V. Molecular understanding of organic solar cells: The challenges. Acc. Chem. Res. 42, 1691–1699 (2009).
- 2.
Vandewal, K., Tvingstedt, K., Gadisa, A., Inganäs, O. & Manca, J. V. On the origin of the open-circuit voltage of polymer–fullerene solar cells. Nature Mater. 8, 904–909 (2009).
- 3.
Zhu, X-Y., Yang, Q. & Muntwiler, M. Charge-transfer excitons at organic semiconductor surfaces and interfaces. Acc. Chem. Res. 42, 1779–1787 (2009).
- 4.
Clarke, T. M. & Durrant, J. R. Charge photogeneration in organic solar cells. Chem. Rev. 110, 6736–6767 (2010).
- 5.
Morteani, A. C., Sreearunothai, P., Hertz, L. M., Friend, R. H. & Silva, C. Exciton regeneration at polymeric semiconductor heterojunctions. Phys. Rev. Lett. 92, 247402 (2004).
- 6.
Tvingstedt, K. et al. Electroluminescence from charge transfer states in polymer solar cells. J. Am. Chem. Soc. 131, 11819–11824 (2009).
- 7.
Loi, M. A. et al. Charge transfer excitons in bulk heterojunctions of a polyfluorene copolymer and a fullerene derivative. Adv. Funct. Mater. 17, 2111–2116 (2007).
- 8.
Vandewal, K. et al. The relation between open-circuit voltage and the onset of photocurrent generation by charge-transfer absorption in polymer: fullerene bulk heterojunction solar cells. Adv. Funct. Mater. 18, 2064–2070 (2008).
- 9.
Drori, T. et al. Below-gap excitation of π-conjugated polymer–fullerene blends: Implications for bulk organic heterojunction solar cells. Phys. Rev. Lett. 101, 037401 (2008).
- 10.
Ford, T. A., Ohkita, H., Cook, S., Durrant, J. R. & Greenham, N. C. Direct observation of intersystem crossing in charge-pair states in polyfluorene polymer blends. Chem. Phys. Lett. 454, 237–241 (2008).
- 11.
Wilke, A. et al. Electric fields induced by energy level pinning at organic heterojunctions. Appl. Phys. Lett. 98, 123304 (2011).
- 12.
Beljonne, D. et al. Electronic processes at organic-organic interfaces: Insight from modeling and implications for opto-electronic devices. Chem. Mater. 23, 591–609 (2011).
- 13.
McMahon, D. P., Cheung, D. L. & Troisi, A. Why holes and electrons separate so well in polymer/fullerene photovoltaic cells. J. Phys. Chem. Lett. 2, 2737–2741 (2011).
- 14.
Chen, W. et al. Hierarchical nanomorphologies promote exciton dissociation in polymer/fullerene bulk heterojunction solar cells. Nano. Lett. 11, 3707–3713 (2011).
- 15.
Grancini, G. et al. Transient absorption imaging of P3HT: PCBM photovoltaic blend: Evidence for interfacial charge transfer state. J. Phys. Chem. Lett. 2, 1099–1105 (2011).
- 16.
Yost, S. R., Wang, L-P. & Van Voorhis, T. Molecular insight into the energy levels at the organic donor/acceptor interface: A quantum mechanics/molecular mechanics study. J. Phys. Chem. C 115, 14431–14436 (2011).
- 17.
Liu, A. et al. Control of electric field strength and orientation at the donor–acceptor interface in organic solar cells. Adv. Mater. 20, 1065–1070 (2008).
- 18.
Peumans, P. & Forrest, S. R. Separation of geminate charge-pairs at donor–acceptor interfaces in disordered solids. Chem. Phys. Lett. 398, 27–31 (2004).
- 19.
Gregg, B. A. Charged defects in soft semiconductors and their influence on organic photovoltaics. Soft Matter 5, 2985–2989 (2009).
- 20.
Gregg, B. A. Entropy of charge separation in organic photovoltaic cells: The benefit of higher dimensionality. J. Phys. Chem. Lett. 2, 3013–3015 (2011).
- 21.
Müller, J. G. et al. Ultrafast dynamics of charge carrier photogeneration and geminate recombination in conjugated polymer: Fullerene solar cells. Phys. Rev. B 72, 195208 (2005).
- 22.
Bakulin, A. A. et al. The role of driving energy and delocalized states for charge separation in organic semiconductors. Science 335, 1340–1344 (2012).
- 23.
Ohkita, H. et al. Charge carrier formation in polythiophene/fullerene blend films studied by transient absorption spectroscopy. J. Am. Chem. Soc. 130, 3030–3042 (2008).
- 24.
Schoaee, S. et al. Acceptor energy level control of charge photogeneration in organic donor/acceptor blends. J. Am. Chem. Soc. 132, 12919–12926 (2010).
- 25.
Lee, J. et al. Charge transfer state versus hot exciton dissociation in polymer–fullerene blended solar cells. J. Am. Chem. Soc. 132, 11878–11880 (2010).
- 26.
Van der Hofstad, T. G. J., Di Nuzzo, D., van den Berg, M., Janssen, R. A. J. & Meskers, S. C. J. Influence of photon excess energy on charge carrier dynamics in a polymer–fullerene solar cell. Adv. Energy Mater. 2, 1095–1099 (2012).
- 27.
Herrmann, D. et al. Role of structural order and excess energy on ultrafast free charge generation in hybrid polythiophene/Si photovoltaics probed in realtime by near-infrared broadband transient absorption. J. Am. Chem. Soc. 133, 18220–18233 (2011).
- 28.
Tisdale, W. A. et al. Hot electron transfer from semiconductor nanocrystals. Science 328, 1543–1547 (2010).
- 29.
Chan, W-L. et al. Observing the multi-exciton state in singlet fission and ensuing ultrafast multi-electron transfer. Science 334, 1541–1545 (2011).
- 30.
Lobaugh, J. & Rossky, P. J. Computer simulations of the excited state dynamics of betaine-30 in acetonitrile. J. Phys. Chem. A 103, 9432–9447 (1999).
- 31.
Sterpone, F., Bedard-Hearn, M. J. & Rossky, P. J. Nonadiabatic simulations of exciton dissociation in poly-p-phenylenevinylene oligomers. J. Phys. Chem. A 114, 7661–7670 (2010).
- 32.
Xue, J., Rand, B. P., Uchida, S. & Forrest, S. R. A hybrid planar-mixed molecular heterojunction photovoltaics cell. Adv. Mater. 17, 66–71 (2005).
- 33.
Akaike, K., Kanai, K., Ouchi, Y. & Seki, K. Impact of ground-state charge transfer and polarization energy change on energy band offsets at donor/acceptor interface in organic photovoltaics. Adv. Funct. Mater. 20, 715–721 (2010).
- 34.
Tang, J. X., Zhou, Y. C., Liu, Z. T., Lee, C. S. & Lee, S. T. Interfacial electronic structures in an organic double-heterostructure photovoltaic cell. Appl. Phys. Lett. 93, 043512 (2008).
- 35.
Kaake, L, Jailaubekov, A., Williams, K. & Zhu, X-Y. Probing ultrafast charge separation at organic donor/acceptor interfaces by a femtosecond electric field meter. Appl. Phys. Lett. 99, 083307 (2011).
- 36.
Scholes, G. A. Insights into excitons confined to nanoscale systems: electron–hole interaction, binding energy, and photodissociation. ACS Nano 2, 523–537 (2008).
- 37.
Dutton, G. J., Jin, W., Reutt-Robey, J. E. & Robey, S. W. Ultrafast charge-transfer processes at an oriented phthalocyanine/C60 interface. Phys. Rev. B 82, 073407 (2010).
- 38.
Warshel, A. & Karplus, M. Calculation of ground and excited-state potential surfaces of conjugated molecules. 1. Formulation and parameterization. J. Am. Chem. Soc. 94, 5612–5625 (1972).
- 39.
Tully, J. C. Molecular-dynamics with electronic-transitions. J. Chem. Phys. 93, 1061–1071 (1990).
- 40.
Davidson, A. T. The effect of the metal atom on the absorption spectra of phthalocyanine films. J. Chem. Phys. 88, 168 (1982).
- 41.
Kasha, M. J. Energy transfer mechanisms and the molecular exciton model for molecular aggregates. Radiat. Res. 20, 55–71 (1963).
- 42.
Onsager, L. Initial recombination of ion pairs. Phys. Rev. 54, 554–557 (1938).
- 43.
Xi, X. et al. A comparative study on the performances of small molecule organic solar cells based on CuPc/C60 and CuPc/C70. Sol. Energy Mater. Sol. Cells 94, 2435–2441 (2010).
- 44.
Sai, N. et al. Understanding the interfacial dipole field at the copper phthalocyanine (CuPc)/C60 interface: Theory and experiment. J. Phys. Chem. Lett. 3, 273–2177 (2012).
- 45.
Lobaugh, J. & Rossky, P. J. Solvent and intramolecular effects on the absorption spectrum of betaine-30. J. Phys. Chem. A 104, 899–907 (2000).
Acknowledgements
The results reported here were based on work supported as part of the Understanding Charge Separation and Transfer at Interfaces in Energy Materials (EFRC:CST), an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001091. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. Computational resources were provided by TACC and NERSC.
Author information
Author notes
- Askat E. Jailaubekov
- & Adam P. Willard
These authors contributed equally to this work
- Loren G. Kaake
- & X-Y. Zhu
Present addresses: Department of Physics, University of California, Santa Barbara, California 93106, USA (L.G.K.); Department of Chemistry, Columbia University, New York, New York 10027, USA (X-Y.Z.)
Affiliations
Energy Frontier Research Center (EFRC: CST), University of Texas, Austin, Texas 78712, USA
- Askat E. Jailaubekov
- , Adam P. Willard
- , John R. Tritsch
- , Wai-Lun Chan
- , Na Sai
- , Raluca Gearba
- , Loren G. Kaake
- , Kenrick J. Williams
- , Peter J. Rossky
- & X-Y. Zhu
Sandia National Laboratory, Albuquerque, New Mexico 87185, USA
- Kevin Leung
Authors
Search for Askat E. Jailaubekov in:
Search for Adam P. Willard in:
Search for John R. Tritsch in:
Search for Wai-Lun Chan in:
Search for Na Sai in:
Search for Raluca Gearba in:
Search for Loren G. Kaake in:
Search for Kenrick J. Williams in:
Search for Kevin Leung in:
Search for Peter J. Rossky in:
Search for X-Y. Zhu in:
Contributions
X-Y.Z. supervised the experiments. P.J.R. supervised QM/MM simulations; A.E.J. and L.G.K. carried out the TR-SHG experiments; J.R.T. and W-L.C. carried out the TR-2PPE experiments; A.P.W. carried out the QM/MM simulations; R.G. assisted in sample preparation; K.J.W. helped with experimental set-up; N.S. and K.L. carried out time-dependent density functional theory calculations. X-Y.Z., A.E.J. and A.P.W. wrote the manuscript.
Competing interests
The authors declare no competing financial interests.
Corresponding authors
Correspondence to Askat E. Jailaubekov or Adam P. Willard or Loren G. Kaake or Peter J. Rossky or X-Y. Zhu.
Supplementary information
PDF files
- 1.
Supplementary Information
Supplementary Information
Rights and permissions
To obtain permission to re-use content from this article visit RightsLink.