Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

P2-NaxVO2 system as electrodes for batteries and electron-correlated materials

Abstract

Layered oxides are the subject of intense studies either for their properties as electrode materials for high-energy batteries or for their original physical properties due to the strong electronic correlations resulting from their unique structure. Here we present the detailed phase diagram of the layered P2-NaxVO2 system determined from electrochemical intercalation/deintercalation in sodium batteries and in situ X-ray diffraction experiments. It shows that four main single-phase domains exist within the 0.5≤x≤0.9 range. During the sodium deintercalation (intercalation), they differ from one another in the sodium/vacancy ordering between the VO2 slabs, which leads to commensurable or incommensurable superstructures. The electrochemical curve reveals that three peculiar compositions exhibit special structures for x = 1/2, 5/8 and 2/3. The detailed structural characterization of the P2-Na1/2VO2 phase shows that the Na+ ions are perfectly ordered to minimize Na+/Na+ electrostatic repulsions. Within the VO2 layers, the vanadium ions form pseudo-trimers with very short V–V distances (two at 2.581 Å and one at 2.687 Å). This original distribution leads to a peculiar magnetic behaviour with a low magnetic susceptibility and an unexpected low Curie constant. This phase also presents a first-order structural transition above room temperature accompanied by magnetic and electronic transitions. This work opens up a new research domain in the field of strongly electron-correlated materials. From the electrochemical point of view this system may be at the origin of an entire material family optimized by cationic substitutions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: X-ray diffraction pattern of the P2-Na0.71VO2 composition obtained by solid-state synthesis.
Figure 2: Evolution of the electrochemical behaviour of the P2-NaxVO2 system.
Figure 3: Synchrotron diffraction pattern of P2-Na1/2VO2 and Rietveld refinement of its structure.
Figure 4: Three-dimensional overview of the structure of P2-Na1/2VO2.
Figure 5: Projection of the structure of P2-Na1/2VO2 along the c axis.
Figure 6: Physical properties of P2-Na1/2VO2.

Similar content being viewed by others

References

  1. Delmas, C., Braconnier, J. J., Fouassier, C. & Hagenmuller, P. Electrochemical intercalation of sodium in NaxCoO2 bronzes. Solid State Ion. 3-4, 165–169 (1981).

    Article  CAS  Google Scholar 

  2. Takada, K. et al. Superconductivity in two-dimensional CoO2 layers. Nature 422, 53–55 (2003).

    Article  CAS  Google Scholar 

  3. Terasaki, I., Sasago, Y & Uchinokura, K. Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B 56, R12685–R12687 (1997).

    Article  CAS  Google Scholar 

  4. Lee, M. et al. Large enhancement of the thermopower in NaxCoO2 at high Na doping. Nature Mater. 5, 537–540 (2006).

    Article  CAS  Google Scholar 

  5. Delmas, C., Fouassier, C. & Hagenmuller, P. Structural classification and properties of layered oxides. Physica B and C 99, 81–85 (1980).

    Article  CAS  Google Scholar 

  6. Zandbergen, H., Foo, M., Xu, Q., Kumar, V. & Cava, R. J. Sodium ion ordering in NaxCoO2: Electron diffraction study. Phys. Rev. B 70, 024101 (2004).

    Article  Google Scholar 

  7. Berthelot, R., Carlier, D. & Delmas, C. Electrochemical investigation of the P2-NaxCoO2 phase diagram. Nature Mater. 10, 74–80 (2011).

    Article  CAS  Google Scholar 

  8. Feinleib, J. & Paul, W. Semiconductor-to-metal transition in V2O3 . Phys. Rev. 155, 841–850 (1967).

    Article  CAS  Google Scholar 

  9. McWhan, D. B. et al. Electronic specific heat of metallic Ti-doped V2O3 . Phys. Rev. Lett. 27, 941–943 (1971).

    Article  CAS  Google Scholar 

  10. Paul, W. The present position of theory and experiment for VO2 . Mater. Res. Bull. 5, 691–702 (1970).

    Article  CAS  Google Scholar 

  11. Villeneuve, G. et al. Contribution to the study of the metal-insulator transition in the V1−xNbxO2 system: I- crystallographic and transport properties. J. Phys. Chem. Solids 33, 1953–1959 (1972).

    Article  CAS  Google Scholar 

  12. Barker, M. J. & Hooper, A. J. Reactions of sodium oxide with the oxides VO2, V2O3, VO, and vanadium metal. J. Chem. Soc. Dalton Trans. 15, 1513–1517 (1973).

    Article  Google Scholar 

  13. Chamberland, B. L. & Porter, S. K. A study on the preparation and physical property determination of NaVO2 . J. Solid State Chem. 73, 398–404 (1988).

    Article  CAS  Google Scholar 

  14. Onoda, M. Geometrically frustrated triangular lattice system NaxVO2: superparamagnetism in x = 1 and trimerization in x = 0.7. J. Phys. Condens. Matter 20, 145205 (2008).

    Article  Google Scholar 

  15. McQueen, T. M. et al. Successive orbital ordering transitions in NaVO2 . Phys. Rev. Lett. 101, 166402 (2008).

    Article  CAS  Google Scholar 

  16. Jia, T., Zhang, G., Zeng, Z. & Lin, H. Q. Orbitally relieved magnetic frustration in NaVO2 . Phys. Rev. B 80, 045103 (2009).

    Article  Google Scholar 

  17. Ouyang, Z. W., Xia, N. M., Sheng, S. S., Chen, J. & Xia, Z. C. Structural distortion and orbital ordering in the triangular-lattice antiferromagnet NaVO2 from first principles. Phys. Rev. B 83, 094417 (2011).

    Article  Google Scholar 

  18. Szajwaj, O., Gaudin, E., Weill, F., Darriet, J. & Delmas, C. Investigation of the new P′3-Na0.60VO2 phase: Structural and physical properties. Inorg. Chem. 48, 9147–9154 (2009).

    Article  CAS  Google Scholar 

  19. Didier, C. et al. Electrochemical Na-deintercalation from NaVO2 . Electrochem. Solid State Lett. 14, A75–A78 (2011).

    Article  CAS  Google Scholar 

  20. Hamani, D., Ati, M., Tarascon, J. M. & Rozier, P. NaxVO2 as possible electrode for Na-ion batteries. Electochem. Commun. 13, 938–941 (2011).

    Article  CAS  Google Scholar 

  21. Huang, Q. et al. Low temperature phase transitions and crystal structure of Na0.5CoO2 . J. Phys. Condens. Matter 16, 5803–5814 (2004).

    Article  CAS  Google Scholar 

  22. Pausch, H. & Müller-Buschbaum, H. K. A new crystal structure of the general formula Me2+M23+O4: SrCr2O4 . Z. Anorg. Allg. Chem. 405, 1–7 (1974).

    Article  CAS  Google Scholar 

  23. Pausch, H. & Müller-Buschbaum, H. K. The crystal structure of α-CaCr2O4 . Z. Anorg. Allg. Chem. 405, 113–118 (1974).

    Article  CAS  Google Scholar 

  24. Cuno, E. & Müller-Buschbaum, H. K. About a compound formation MO:M2O3. On BaCr2O4 . Z. Anorg. Allg. Chem. 564, 26–30 (1988).

    Article  CAS  Google Scholar 

  25. Chapon, L. C. et al. Helical magnetic state in the distorted triangular lattice of α-CaCr2O4 . Phys. Rev. B 83, 024409 (2011).

    Article  Google Scholar 

  26. Dutton, S. E. et al. Helical magnetism and structural anomalies in triangular lattice α-SrCr2O4 . J. Phys. Condens. Matter 23, 246005 (2011).

    Article  CAS  Google Scholar 

  27. Williams, A. J., Attfiled, J. P., Foo, M. L., Viciu, L. & Cava, R. J. High resolution neutron diffraction study of possible charge ordering in Na0.5CoO2 . Phys. Rev. B 73, 134401 (2006).

    Article  Google Scholar 

  28. Goodenough, J. B. Magnetism And The Chemical Bond (Interscience, 1963).

    Google Scholar 

  29. Imai, K., Sawa, H., Koike, M., Hasegawa, M. & Takei, H. Superstructure analyses on single crystals of Li0.8VO2 . J. Solid State Chem. 114, 184–189 (1995).

    Article  CAS  Google Scholar 

  30. Schindler, M., Hawthorne, F. C. & Baur, W. H. Crystal chemistry aspect of vanadium: Polyhedral geometries, characteristic bond valences, and polymerization of (VOn) polyhedra. Chem. Mater. 12, 1248–1259 (2000).

    Article  CAS  Google Scholar 

  31. Brown, I. D. The Chemical Bond in Inorganic Chemistry (Oxford Univ. Press, 2002).

    Google Scholar 

  32. Pen, H. F. et al. Phase transition in LiVO2 studied by near-edge X-ray-absorption spectroscopy. Phys. Rev. B 55, 15500–15505 (1997).

    Article  CAS  Google Scholar 

  33. Kobayashi, K., Kosuge, K. & Kachi, S. Electric and magnetic properties of LixV2−xO2 . Mater. Res. Bull. 4, 95–106 (1969).

    Article  CAS  Google Scholar 

  34. Cox, P.A. Transition Metal Oxides—An Introduction to their Electronic Structure and Properties (Clarendon, 1992).

    Google Scholar 

  35. Petricek, V., Dusek, M. & Palatinus, L. The Crystallographic Computing System (Institute of Physics, 2006).

    Google Scholar 

  36. Thompson, P., Cox, D. E. & Hastings, J. B. Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al2O3 . J. Appl. Crystallogr. 20, 79–83 (1980).

    Article  Google Scholar 

  37. Bérar, J. F. & Baldinozzi, G. Modeling of line-shape asymmetry in powder diffraction. J. Appl. Crystallogr. 26, 128–129 (1993).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank R. Decourt for transport measurements and C. Denage for technical assistance. Financial support was provided by CNRS and Région Aquitaine.

Author information

Authors and Affiliations

Authors

Contributions

M.G., J.D. and C. Delmas planned the research. M.G., C. Didier, P.B. and E.E. carried out the experimental work. M.G., C. Didier, J.D. P.B., E.E. and C. Delmas analysed the data, and wrote and revised the manuscript.

Corresponding author

Correspondence to Claude Delmas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 569 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guignard, M., Didier, C., Darriet, J. et al. P2-NaxVO2 system as electrodes for batteries and electron-correlated materials. Nature Mater 12, 74–80 (2013). https://doi.org/10.1038/nmat3478

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3478

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing