Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Autonomous motors of a metal–organic framework powered by reorganization of self-assembled peptides at interfaces

Abstract

A variety of microsystems have been developed that harness energy and convert it to mechanical motion. Here we have developed new autonomous biochemical motors by integrating a metal–organic framework (MOF) and self-assembling peptides. The MOF is applied as an energy-storing cell that assembles peptides inside nanoscale pores of the coordination framework. The nature of peptides enables their assemblies to be reconfigured at the water/MOF interface, and thus converted to fuel energy. Reorganization of hydrophobic peptides can create a large surface-tension gradient around the MOF that can efficiently power its translational motion. As a comparison, the velocity normalized by volume for the diphenylalanine–MOF particle is faster and the kinetic energy per unit mass of fuel is more than twice as great as that for previous gel motor systems. This demonstration opens the route towards new applications of MOFs and reconfigurable molecular self-assembly, possibly evolving into a smart autonomous motor capable of mimicking swimming bacteria and, with integrated recognition units, harvesting target chemicals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hybrid peptide–MOF motor.
Figure 2: Illustration of the mechanism of DPA–MOF motion.
Figure 3: DPA–MOF motor powered by self-assembly of DPA peptides at the interface.

Similar content being viewed by others

References

  1. Hanczyc, M. M., Toyota, T., Ikegami, T., Packard, N. & Sugawara, T. Fatty acid chemistry at the oil–water interface: Self-propelled oil droplets. J. Am. Chem. Soc. 129, 9386–9391 (2007).

    Article  CAS  Google Scholar 

  2. Sumino, Y., Magome, N., Hamada, T. & Yoshikawa, K. Self-running droplet: Emergence of regular motion from nonequilibrium noise. Phys. Rev. Lett. 94, 068301 (2005).

    Article  Google Scholar 

  3. Nakata, S. & Murakami, M. Self-motion of a camphor disk on an aqueous phase depending on the alkyl chain length of sulfate surfactants. Langmuir 26, 2414–2417 (2010).

    Article  CAS  Google Scholar 

  4. Marangoni, C. Ueber die Ausbreitung der Tropfen einer Flüssigkeit auf der Oberfläche einer anderen. Ann. Phys. 219, 337–354 (1871).

    Article  Google Scholar 

  5. Gong, J. P., Matsumoto, S., Uchida, M., Isogai, N. & Osada, Y. Motion of polymer gels by spreading organic fluid on water. J. Phys. Chem. 100, 11092–11097 (1996).

    Article  CAS  Google Scholar 

  6. Verkhovsky, A. B., Svitkina, T. M. & Borisy, G. G. Self-polarization and directional motility of cytoplasm. Curr. Biol. 9, 11–20 (1999).

    Article  CAS  Google Scholar 

  7. Miyata, H., Nishiyama, S., Akashi, K. & Kinosita, K. J. Protrusive growth from giant liposomes driven by actin polymerization. Proc. Natl Acad. Sci. USA 96, 2048–2053 (1999).

    Article  CAS  Google Scholar 

  8. Upadhyaya, A. & van Oudenaarden, A. Biomimetic systems for studying actin-based motility. Curr. Biol. 13, R734–R744 (2003).

    Article  CAS  Google Scholar 

  9. Upadhyaya, A., Chabot, J. R., Andreeva, A., Samadani, A. & van Oudenaarden, A. Probing polymerization forces by using actin-propelled lipid vesicles. Proc. Natl Acad. Sci. USA 100, 4521–4526 (2003).

    Article  CAS  Google Scholar 

  10. Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

    Article  CAS  Google Scholar 

  11. Ferey, G. Hybrid porous solids: Past, present, future. Chem. Soc. Rev. 37, 191–214 (2008).

    Article  CAS  Google Scholar 

  12. Bradshaw, D., Claridge, J. B., Cussen, E. J., Prior, T. J. & Rosseinsky, M. J. Design, chirality, and flexibility in nanoporous molecular-based materials. Acc. Chem. Res. 38, 273–282 (2005).

    Article  CAS  Google Scholar 

  13. Murray, L. J., Dinca, M. & Long, J. R. Hydrogen storage in metal–organic frameworks. Chem. Soc. Rev. 38, 1294–1314 (2009).

    Article  CAS  Google Scholar 

  14. Kitagawa, S., Kitaura, R. & Noro, S. Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004).

    Article  CAS  Google Scholar 

  15. Li, J. R., Kuppler, R. J. & Zhou, H. C. Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009).

    Article  CAS  Google Scholar 

  16. Forster, P. M. & Cheetham, A. K. Hybrid inorganic-organic solids: An emerging class of nanoporous catalysts. Top. Catal. 24, 79–86 (2003).

    Article  CAS  Google Scholar 

  17. Lee, J. et al. Metal-organic framework materials as catalysts. Chem. Soc. Rev. 38, 1450–1459 (2009).

    Article  CAS  Google Scholar 

  18. Oh, M. & Mirkin, C. A. Chemically tailorable colloidal particles from infinite coordination polymers. Nature 438, 651–654 (2005).

    Article  CAS  Google Scholar 

  19. Uemura, T., Yanai, N. & Kitagawa, S. Polymerization reactions in porous coordination polymers. Chem. Soc. Rev. 38, 1228–1236 (2009).

    Article  CAS  Google Scholar 

  20. Hartgerink, J. D., Beniash, E. & Stupp, S. I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294, 1684–1688 (2001).

    Article  CAS  Google Scholar 

  21. Reches, M. & Gazit, E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300, 625–627 (2003).

    Article  CAS  Google Scholar 

  22. Bellomo, E. G., Wyrsta, M. D., Pakstis, L., Pochan, D. J. & Deming, T. J. Stimuli-responsive polypeptide vesicles by conformation-specific assembly. Nature Mater. 3, 244–248 (2004).

    Article  CAS  Google Scholar 

  23. Pouget, E. et al. Hierarchical architectures by synergy between dynamical template self-assembly and biomineralization. Nature Mater. 6, 434–439 (2007).

    Article  CAS  Google Scholar 

  24. Ura, Y., Beierle, J. M., Leman, L. J., Orgel, L. E. & Ghadiri, M. R. Self-assembling sequence-adaptive peptide nucleic acids. Science 325, 73–77 (2009).

    Article  CAS  Google Scholar 

  25. Banwell, E. F. et al. Rational design and application of responsive α-helical peptide hydrogels. Nature Mater. 8, 596–600 (2009).

    Article  CAS  Google Scholar 

  26. Mershin, A., Cook, B., Kaiser, L. & Zhang, S. G. A classic assembly of nanobiomaterials. Nature Biotech. 23, 1379–1380 (2005).

    Article  CAS  Google Scholar 

  27. Williams, R. J. et al. Enzyme-assisted self-assembly under thermodynamic control. Nature Nanotech. 4, 19–24 (2009).

    Article  CAS  Google Scholar 

  28. McKinlay, A. C. et al. BioMOFs: Metal-organic frameworks for biological and medical applications. Angew. Chem. Int. Ed. 49, 6260–6266 (2009).

    Article  Google Scholar 

  29. Rabone, J. et al. An adaptable peptide-based porous material. Science 329, 1053–1057 (2010).

    Article  CAS  Google Scholar 

  30. Mitsumata, T., Ikeda, K., Gong, J. P. & Osada, Y. Solvent-driven chemical motor. Appl. Phys. Lett. 73, 2366–2368 (1998).

    Article  CAS  Google Scholar 

  31. Seki, K. & Mori, W. Synthesis and characterization of microporous coordination polymers with open frameworks. J. Phys. Chem. B 106, 1380–1385 (2002).

    Article  CAS  Google Scholar 

  32. Uemura, T. et al. Unveiling thermal transitions of polymers in subnanometre pores. Nature Commun. 1, 83–91 (2010).

    Article  Google Scholar 

  33. Uemura, T., Ono, Y., Kitagawa, K. & Kitagawa, S. Radical polymerization of vinyl monomers in porous coordination polymers: Nanochannel size effects on reactivity, molecular weight, and stereostructure. Macromolecules 41, 87–94 (2008).

    Article  CAS  Google Scholar 

  34. Uemura, T., Ono, Y., Hijikata, Y. & Kitagawa, S. Functionalization of coordination nanochannels for controlling tacticity in radical vinyl polymerization. J. Am. Chem. Soc. 132, 4917–4924 (2010).

    Article  CAS  Google Scholar 

  35. Dos Santos, F. D. & Ondarçuhu, T. Free-running droplets. Phys. Rev. Lett. 75, 2972–2975 (1995).

    Article  CAS  Google Scholar 

  36. Lheveder, C. et al. A new Brewster angle microscope. Rev. Sci. Instrum. 69, 1446–1450 (1998).

    Article  CAS  Google Scholar 

  37. Yanai, N. et al. Fabrication of two-dimensional polymer arrays: Template synthesis of polypyrrole between redox-active coordination nanoslits. Angew. Chem. Int. Ed. 47, 9883–9886 (2008).

    Article  CAS  Google Scholar 

  38. Uemura, T. et al. Highly photoconducting pi-stacked polymer accommodated in coordination nanochannels. J. Am. Chem. Soc. 134, 8360–8363 (2012).

    Article  CAS  Google Scholar 

  39. Reches, M. & Gazit, E. Controlled patterning of aligned self-assembled peptide nanotubes. Nature Nanotech. 1, 195–200 (2006).

    Article  CAS  Google Scholar 

  40. Görbitz, C. H. Nanotube formation by hydrophobic dipeptides. Chem. Eur. J. 7, 5153–5159 (2001).

    Article  Google Scholar 

  41. Görbitz, C. H. The structure of nanotubes formed by diphenylalanine, the core recognition motif of Alzheimer’s β-amyloid polypeptide. Chem. Commun. 2332–2334 (2006).

  42. Wolde, P. R. t. & Frenkel, D. enhancement of protein crystal nucleation by critical density fluctuations. Science 277, 1975–1978 (1997).

    Article  Google Scholar 

  43. Lagzi, I., Soh, S., Wesson, P. J., Browne, K. P. & Grzybowski, B. a. Maze solving by chemotactic droplets. J. Am. Chem. Soc. 132, 1198–1199 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All of the work apart from chemical syntheses of MOFs was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DE-FG-02-01ER45935. Hunter College infrastructure is supported by the National Institutes of Health, the RCMI program (G12 MD007599). Chemical syntheses of MOFs in Kyoto were supported by Grant-in-Aid for Scientific Research on Innovative Area ‘Emergence in Chemistry’ from MEXT. H.M. acknowledges the Japan Society for the Promotion of Science (JSPS) for supporting his collaboration at the Institute for Integrated Cell-Material Sciences (iCeMS) in Kyoto University through the Invitation Fellowship Program for Research in Japan. Y.I. and H.M. thank R. Tu (City College of New York) for the use of and assistance with Brewster angle microscopy.

Author information

Authors and Affiliations

Authors

Contributions

H.M. and Y.I. conceived and coordinated the project. Y.I., T.U. and H.M. wrote the paper. G.W., T.U. and H.M. synthesized and analysed the materials. Y.I. and H.M. performed the motion and microscopic studies on samples. Y.I., G.W., T.U., S.K. and H.M. discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Hiroshi Matsui.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4264 kb)

Supplementary Information

Supplementary Movie S1 (MOV 546 kb)

Supplementary Information

Supplementary Movie S2 (MOV 161 kb)

Supplementary Information

Supplementary Movie S3 (MOV 13063 kb)

Supplementary Information

Supplementary Movie S4 (MOV 3448 kb)

Supplementary Information

Supplementary Movie S5 (MOV 159 kb)

Supplementary Information

Supplementary Movie S6 (MOV 479 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikezoe, Y., Washino, G., Uemura, T. et al. Autonomous motors of a metal–organic framework powered by reorganization of self-assembled peptides at interfaces. Nature Mater 11, 1081–1085 (2012). https://doi.org/10.1038/nmat3461

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3461

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research