Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Biomaterials in the repair of sports injuries

The optimal stimulation of tissue regeneration in bone, cartilage and spinal cord injuries involves a judicious selection of biomaterials with tailored chemical compositions, micro- and nanostructures, porosities and kinetic release properties for the delivery of relevant biologically active molecules.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Events occurring at the interface between a bioactive ceramic and the biological milieu.
Figure 2: In large cartilage defects, cellular delivery is the preferred method of treatment.
Figure 3: Engineered nervous tissue embedded in hydrogels is being used to deliver cell therapy.

References

  1. Ducheyne, P., Healy, K. E., Hutmacher, D. W., Grainger, D. W. & Kirkpatrick, C. J. (eds) Comprehensive Biomaterials (Elsevier, 2011).

    Google Scholar 

  2. Ducheyne, P. & Qiu, Q-Q. Biomaterials 20, 2287–2303 (1999).

    Article  CAS  Google Scholar 

  3. Yao, J., Radin, S., Reilly, G., Leboy, P. S. & Ducheyne, P. J. Biomed. Mater. Res. 75A, 794–801 (2005).

    Article  CAS  Google Scholar 

  4. Xynos, I. D. et al. Calcif. Tissue Int. 67, 321–329 (2000).

    Article  CAS  Google Scholar 

  5. Rey, C., Combes, C., Drouet, C. & Somrani, S. in Bioceramics and Their Clinical Applications (ed. Kokubo, T.) 326–366 (CRC/Woodhead, 2008).

    Book  Google Scholar 

  6. Yuan, H., van Blitterswijk, C. A., de Groot, K. & de Bruijn, J. D. J. Biomed. Mater. Res. 78A, 139–147 (2006).

    Article  CAS  Google Scholar 

  7. Calori, G. M., Mazza, E., Colombo, M. & Ripamonti, C. Injury 42, S56–S63 (2011).

    Article  Google Scholar 

  8. Brown, K. V. et al. Tissue Eng. Part A 17, 1735–1746 (2011).

    Article  CAS  Google Scholar 

  9. Steadman, J. R., Rodkey, W. G. & Rodrigo, J. J. Clin. Orthop. Relat. Res. 391, S362–S369 (2001).

    Article  Google Scholar 

  10. Gigante, A. et al. Int. J. Immunopathol. Pharmacol. 24, 69–72 (2011).

    Article  CAS  Google Scholar 

  11. Gomoll, A. H. J. Knee Surg. 25, 9–15 (2012).

    Article  Google Scholar 

  12. Kramer, J. et al. Cell Mol. Life Sci. 63, 616–26 (2006).

    Article  CAS  Google Scholar 

  13. Erggelet, C. et al. J. Orthop. Res. 27, 1353–1360 (2009).

    Article  Google Scholar 

  14. Peterson, L., Vasiliadis, H. S., Brittberg, M. & Lindahl, A. Am. J. Sports Med. 38, 1117–1124 (2010).

    Article  Google Scholar 

  15. Kon, E. et al. Am. J. Sports Med. 39, 1668–1675 (2011).

    Article  Google Scholar 

  16. Bunge, M. B. Neuroscientist 7, 325–339 (2001).

    Article  CAS  Google Scholar 

  17. Geller, H. M. & Fawcett, J. W. Exp. Neurol. 174, 125–136 (2002).

    Article  Google Scholar 

  18. Park, H. et al. Tissue Eng. 13, 1867–1877 (2007).

    Article  CAS  Google Scholar 

  19. Straley, K. S., Foo, C. W. & Heilshorn, S. C. J. Neurotrauma 27, 1–19 (2010).

    Article  Google Scholar 

  20. Wang, M. et al. Tissue Eng. Part B 17, 177–194 (2011).

    Article  Google Scholar 

  21. Jiang, F. X., Yurke, B., Schloss, R. S., Firestein, B. L. & Langrana, N. A. Tissue Eng. Part A 16, 1873–1889 (2010).

    Article  CAS  Google Scholar 

  22. Prang, P. et al. Biomaterials 27, 3560–3569 (2006).

    CAS  Google Scholar 

  23. Gros, T., Sakamoto, J. S., Blesch, A., Havton, L. A. & Tuszynski, M. H. Biomaterials 31, 6719–6729 (2010).

    Article  CAS  Google Scholar 

  24. Pakulska, M. M., Ballios, B. G. & Shoichet, M. S. Biomed. Mater. 7, 024101 (2012).

    Article  Google Scholar 

  25. Kim, Y. T., Caldwell, J. M. & Bellamkonda, R. V. Biomaterials 30, 2582–2590 (2009).

    Article  CAS  Google Scholar 

  26. Katz, J. S. & Burdick, J. A. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 1, 128–139 (2009).

    Article  CAS  Google Scholar 

  27. Lee, H., McKeon, R. J. & Bellamkonda, R. V. Proc. Natl Acad. Sci. USA 23, 3340–3345 (2010).

    Article  Google Scholar 

  28. Kubinova, S. & Sykova, E. Regen. Med. 7, 207–224 (2012).

    Article  CAS  Google Scholar 

  29. Smith, D. H. Prog. Neurobiol. 89, 231–239 (2009).

    Article  CAS  Google Scholar 

  30. Smith, D. H., Wolf, J. A. & Meaney, D. F. Tissue Eng. 7, 131–139 (2001).

    Article  CAS  Google Scholar 

  31. Iwata, A., Browne, K. D., Pfister, B. J., Gruner, J. A. & Smith, D. H. Tissue Eng. 12, 101–110 (2006).

    Article  CAS  Google Scholar 

  32. Pollack, A. Geron Is Shutting Down Its Stem Cell Clinical Trial http://go.nature.com/tCaQDn (New York Times, November 2011).

    Google Scholar 

  33. Smith, D. H. Prog. Neurobiol. 89, 231–239 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Ducheyne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ducheyne, P., Mauck, R. & Smith, D. Biomaterials in the repair of sports injuries. Nature Mater 11, 652–654 (2012). https://doi.org/10.1038/nmat3392

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3392

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing