Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electrical control of the superconducting-to-insulating transition in graphene–metal hybrids

Abstract

Graphene1 is a sturdy and chemically inert material exhibiting an exposed two-dimensional electron gas of high mobility. These combined properties enable the design of graphene composites, based either on covalent2 or non-covalent3 coupling of adsorbates, or on stacked and multilayered heterostructures4. These systems have shown tunable electronic properties such as bandgap engineering3, reversible metal–insulating transition2,4 or supramolecular spintronics5. Tunable superconductivity is expected as well6, but experimental realization is lacking. Here, we show experiments based on metal–graphene hybrid composites, enabling the tunable proximity coupling of an array of superconducting nanoparticles of tin onto a macroscopic graphene sheet. This material allows full electrical control of the superconductivity down to a strongly insulating state at low temperature. The observed gate control of superconductivity results from the combination of a proximity-induced superconductivity generated by the metallic nanoparticle array with the two-dimensional and tunable metallicity of graphene. The resulting hybrid material behaves, as a whole, like a granular superconductor showing universal transition threshold and localization of Cooper pairs in the insulating phase. This experiment sheds light on the emergence of superconductivity in inhomogeneous superconductors, and more generally, it demonstrates the potential of graphene as a versatile building block for the realization of superconducting materials.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Self-assembled graphene–tin nanohybrids.
Figure 2: Sheet resistance as a function of temperature for different gate voltages.
Figure 3: Sheet resistance as a function of gate voltage for different temperatures.
Figure 4: Localization of Cooper pairs under a magnetic field.
Figure 5: Universal scaling of the transition.

Similar content being viewed by others

References

  1. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    CAS  Google Scholar 

  2. Elias, D. C. et al. Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science 323, 610–613 (2009).

    Article  CAS  Google Scholar 

  3. Kozlov, S. M., Vines, F. & Görling, A. Bandgap engineering of graphene by physisorbed adsorbates. Adv. Mater. 23, 2638–2643 (2011).

    Article  CAS  Google Scholar 

  4. Ponomarenko, A. L. et al. Tunable metal-insulator transition in double-layer graphene heterostructure. Nature Phys. 7, 958–961 (2011).

    Article  CAS  Google Scholar 

  5. Candini, A. et al. Graphene spintronic devices with molecular nanomagnets. Nano Lett. 11, 2634–2639 (2011).

    Article  CAS  Google Scholar 

  6. Uchoa, B. & Castro Neto, A-H. Superconducting states of pure and doped graphene. Phys. Rev. Lett. 98, 146801 (2007).

    Article  Google Scholar 

  7. Heersche, H. B., Jarillo-Herrero, P., Oostinga, J. B., Vandersypen, L. & Morpurgo, A. F. Bipolar supercurrent in graphene. Nature 446, 56–59 (2007).

    Article  CAS  Google Scholar 

  8. Feigel’man, M. V., Skvortsov, M. A. & Tikhonov, K. S. Proximity-induced superconductivity in graphene. JETP Lett. 88, 747–751 (2008).

    Article  Google Scholar 

  9. Kessler, B. M., Girit, C. Ö., Zettl, A. & Bouchiat, V. Tunable superconducting phase transition in metal-decorated graphene sheets. Phys. Rev. Lett. 104, 047001 (2010).

    Article  CAS  Google Scholar 

  10. Goldman, A. M. & Markovic, N. Superconductor–insulator transitions in the two-dimensional limit. Phys. Today 51, 39–43 (November 1998).

    Article  CAS  Google Scholar 

  11. Sondhi, S. L., Girvin, S. M., Carini, J. P. & Shahar, D. Continuous quantum phase transitions. Rev. Mod. Phys. 69, 315–333 (1997).

    Article  Google Scholar 

  12. Bollinger, A. T. et al. Superconductor–insulator transition in La2xSrxCuO4 at the pair quantum resistance. Nature 472, 458–460 (2011).

    Article  CAS  Google Scholar 

  13. Parendo, K. A. et al. Electrostatic tuning of the superconductor–insulator transition in two dimensions. Phys. Rev. Lett. 94, 197004 (2005).

    Article  Google Scholar 

  14. Leng, X., Garcia-Barriocanal, J., Bose, S., Lee, Y. & Goldman, A. M. Electrostatic control of the evolution from a superconducting phase to an insulating phase in ultrathin YBa2Cu3O7−x films. Phys. Rev. Lett. 107, 027001 (2011).

    Article  Google Scholar 

  15. Li, X. S. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

    Article  CAS  Google Scholar 

  16. Frydman, A., Naaman, O. & Dynes, R. C. Universal transport in two-dimensional granular superconductors. Phys. Rev. B 66, 052509 (2002).

    Article  Google Scholar 

  17. Jaeger, H. M., Haviland, D. B., Orr, B. G. & Goldman, A. M. Onset of superconductivity in ultrathin granular metal films. Phys. Rev. B 40, 182–196 (1989).

    Article  CAS  Google Scholar 

  18. Van der Zant, H. S. J., Elion, W. J., Geerlings, L. J. & Mooij, J. E. Quantum phase transitions in two dimensions: Experiments in Josephson-junction arrays. Phys. Rev. B 54, 10081–10093 (1996).

    Article  CAS  Google Scholar 

  19. Chakravarty, S., Kivelson, S., Zimanyi, G. T. & Halperin, B. I. Effect of quasiparticle tunneling on quantum-phase fluctuations and the onset of superconductivity in granular films. Phys. Rev. B 35, 7256–7259 (1987).

    Article  CAS  Google Scholar 

  20. Rimberg, A. J. et al. Dissipation-driven superconductor–insulator transition in a two-dimensional Josephson-junction array. Phys. Rev. Lett. 78, 2632–2635 (1997).

    Article  CAS  Google Scholar 

  21. Lutchyn, R. M., Galitski, V., Refael, G. & Das Sarma, S. Dissipation-driven quantum phase transition in superconductor-graphene systems. Phys. Rev. Lett. 101, 106402 (2008).

    Article  Google Scholar 

  22. Mason, N. & Kapitulnik, A. Dissipation effects on the superconductor–insulator transition in 2D superconductors. Phys. Rev. Lett. 82, 5341–5344 (1999).

    Article  CAS  Google Scholar 

  23. Fisher, M. P. A., Grinstein, G. & Girvin, S. M. Presence of quantum diffusion in two dimensions: Universal resistance at the superconductor–insulator transition. Phys. Rev. Lett. 64, 587–590 (1990).

    Article  CAS  Google Scholar 

  24. Steiner, M. A., Boebinger, G. & Kapitulnik, A. Possible field-tuned superconductor–insulator transition in high-Tc superconductors: Implications for pairing at high magnetic fields. Phys. Rev. Lett. 94, 107008 (2005).

    Article  CAS  Google Scholar 

  25. Galitski, V. M. & Larkin, A. I. Superconducting fluctuations at low temperature. Phys. Rev. B 63, 174506 (2001).

    Article  Google Scholar 

  26. Wang, X-L., Feygenson, M., Aronson, M. C. & Han, W-Q. Sn/SnOx core-shell nanospheres: Synthesis, anode performance in Li–Ion batteries, and superconductivity. J. Phys. Chem. C 114, 14697–14703 (2010).

    Article  CAS  Google Scholar 

  27. Nguyen, H. Q. et al. Observation of giant positive magnetoresistance in a Cooper pair insulator. Phys. Rev. Lett. 103, 157001 (2009).

    Article  CAS  Google Scholar 

  28. Baturina, T. I. et al. Localized superconductivity in the quantum-critical region of the disorder-driven superconductor–insulator transition in TiN thin films. Phys. Rev. Lett. 99, 257003 (2007).

    Article  CAS  Google Scholar 

  29. Beloborodov, I. S., Fominov, Ya. V., Lopatin, A. V. & Vinokur, V. M. Insulating state of granular superconductors in a strong-coupling regime. Phys. Rev. B 74, 014502 (2006).

    Article  Google Scholar 

  30. Sacépé, B. et al. Disorder-induced inhomogeneities of the superconducting state close to the superconductor–insulator transition. Phys. Rev. Lett. 101, 157006 (2008).

    Article  Google Scholar 

  31. Sacépé, B. et al. Localization of preformed Cooper pairs in disordered superconductors. Nature Phys. 7, 239–244 (2011).

    Article  Google Scholar 

  32. Wagenblast, K-H., van Otterlo, A., Schön, G. & Zimanyi, G. T. New universality class at the superconductor–insulator transition. Phys. Rev. Lett. 78, 1779–1782 (1997).

    Article  CAS  Google Scholar 

  33. Markovic, N., Christiansen, C., Mack, A. M., Huber, W. H. & Goldman, A. M. Superconductor–insulator transition in two dimensions. Phys. Rev. B 60, 4320–4328 (1999).

    Article  CAS  Google Scholar 

  34. Iyer, S., Pekker, D. & Refael, G. A Mott glass to superfluid transition for random bosons in two dimensions. Phys. Rev. B 85, 094202 (2012).

    Article  Google Scholar 

  35. Caviglia, A. D. et al. Electric field control of the LaAlO3/SrTiO3 interface ground state. Nature 456, 624–627 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is partially supported by ANR-BLANC SuperGraph, ERC Advanced Grant MolNanoSpin No. 226558 and the Cible programme from Région Rhone-Alpes. Samples were fabricated at the NANOFAB facility of the Néel Institute, the support team of which is gratefully acknowledged. We thank H. Arjmandi-Tash, N. Bendiab, H. Bouchiat, C. Chapelier, J. Coraux, M. V. Feigel’man, Ç.Ö. Girit, B. M. Kessler, L. Marty, A. Reserbat-Plantey, B. Sacépé, V. Sessi, W. Wernsdorfer and A. Zettl for help and stimulating discussions.

Author information

Authors and Affiliations

Authors

Contributions

V.B. and A.A. conceived the experiments, Z.H. grew the graphene, A.A. and Z.H. fabricated the samples and carried out the measurements, A.A. and V.B. analysed the data and wrote the paper.

Corresponding author

Correspondence to Vincent Bouchiat.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 515 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allain, A., Han, Z. & Bouchiat, V. Electrical control of the superconducting-to-insulating transition in graphene–metal hybrids. Nature Mater 11, 590–594 (2012). https://doi.org/10.1038/nmat3335

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3335

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing