Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Giant magnetocaloric effect driven by structural transitions

Abstract

Magnetic cooling could be a radically different energy solution substituting conventional vapour compression refrigeration in the future. For the largest cooling effects of most potential refrigerants we need to fully exploit the different degrees of freedom such as magnetism and crystal structure. We report now for Heusler-type Ni–Mn–In–(Co) magnetic shape-memory alloys, the adiabatic temperature change ΔTad = −3.6 to −6.2 K under a moderate field of 2 T. Here it is the structural transition that plays the dominant role towards the net cooling effect. A phenomenological model is established that reveals the parameters essential for such a large ΔTad. We also demonstrate that obstacles to the application of Heusler alloys, namely the usually large hysteresis and limited operating temperature window, can be overcome by using the multi-response to different external stimuli and/or fine-tuning the lattice parameters, and by stacking a series of alloys with tailored magnetostructural transitions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Contributions from the magnetic and structural part for a first-order magnetic transition to the MCE.
Figure 2: Sensitivity of structural transition temperatures to the strength of magnetic field and associated giant cooling effect for Ni–Mn–In–(Co) alloys.
Figure 3: Effect of essential parameters on the transition distribution and the dynamic cooling process under adiabatic conditions for Ni–Mn–In–(Co) alloys.
Figure 4: Feasible solutions for the obstacles to the application of the Ni–Mn–In–Co alloy as a magnetic refrigerant.
Figure 5: Adiabatic temperature change (ΔH = 2 T) for several of the most researched ambient magnetic refrigerants at either a purely magnetic transition temperature Tc (second-order transition, marked by hatched pattern) or magnetostructural coupling transition temperature Tm (first-order transition, solid fill-pattern).

Similar content being viewed by others

References

  1. Gschneidner, K. A. Jr, Pecharsky, V. K. & Tsokol, A. O. Recent developments in magnetocaloric materials. Rep. Prog. Phys. 68, 1479–1539 (2005).

    Article  CAS  Google Scholar 

  2. Giauque, W. F. A thermodynamic treatment of certain magnetic effects. A proposed method of producing temperatures considerably below 1° absolute. J. Am. Chem. Soc. 49, 1864–1870 (1927).

    Article  CAS  Google Scholar 

  3. Pecharsky, V. K. & Gschneidner, K. A. Jr Giant magnetocaloric effect in Gd5(Si2Ge2). Phys Rev. Lett. 78, 4494–4497 (1997).

    Article  CAS  Google Scholar 

  4. Moore, J. D. et al. Metamagnetism seeded by nanostructural features of single-crystalline Gd5Si2Ge2 . Adv. Mater. 21, 3780–3783 (2009).

    Article  CAS  Google Scholar 

  5. Fujita, A., Fujieda, S., Hasegawa, Y. & Fukamichi, K. Itinerant-electron metamagnetic transition and large magnetocaloric effects in La(FexSi1−x)13 compounds and their hydrides. Phys Rev. B 67, 104416 (2003).

    Article  Google Scholar 

  6. Hu, F. X. et al. Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6 . Appl. Phys. Lett. 78, 3675–3677 (2001).

    Article  CAS  Google Scholar 

  7. Lyubina, J., Nenkov, K., Schultz, L. & Gutfleisch, O. Multiple metamagnetic transitions in the magnetic refrigerant La(Fe,Si)13Hx . Phys Rev. Lett. 101, 177203 (2008).

    Article  Google Scholar 

  8. Tegus, O., Brück, E., Buschow, K. H. J. & de Boer, F. R. Transition-metal-based magnetic refrigerants for room-temperature applications. Nature 415, 150–152 (2002).

    Article  CAS  Google Scholar 

  9. Yan, A., Müller, K. H., Schultz, L. & Gutfleisch, O. Magnetic entropy change in melt-spun MnFePGe. J. Appl. Phys. 99, 08K903 (2006).

    Article  Google Scholar 

  10. Gutfleisch, O. et al. Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient. Adv. Mater. 23, 821–842 (2011).

    Article  CAS  Google Scholar 

  11. Kainuma, R. et al. Magnetic-field-induced shape recovery by reverse phase transformation. Nature 439, 957–960 (2006).

    Article  CAS  Google Scholar 

  12. Chmielus, M., Zhang, X. X., Witherspoon, C., Dunand, D. C. & Müllner, P. Giant magnetic-field-induced strains in polycrystalline Ni–Mn–Gafoams. Nature Mater. 8, 863–866 (2009).

    Article  CAS  Google Scholar 

  13. Manosa, L. et al. Giant solid-state barocaloric effect in the Ni–Mn–In magnetic shape memory alloy. Nature Mater. 9, 478–481 (2010).

    Article  CAS  Google Scholar 

  14. Krenke, T. et al. Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys. Nature Mater. 4, 450–454 (2005).

    Article  CAS  Google Scholar 

  15. Liu, J., Woodcock, T. G., Scheerbaum, N. & Gutfleisch, O. Influence of annealing on magnetic field induced structural transformation and magnetocaloric effect in Ni–Mn–In–Co ribbons. Acta Mater. 57, 4911–4920 (2009).

    Article  CAS  Google Scholar 

  16. Pecharsky, V. K. & Gschneidner, K. A. Jr Gd5(SixGe1−x)4: An extremum material. Adv. Mater. 13, 683–686 (2001).

    Article  CAS  Google Scholar 

  17. Pecharsky, V. K., Gschneidner, K. A. Jr, Mudryk, Y. & Paudyal, D. Making the most of the magnetic and lattice entropy changes. J. Magn. Magn. Mater. 321, 3541–3547 (2009).

    Article  CAS  Google Scholar 

  18. Khovaylo, V. V., Skokov, K. P. & Gutfleisch, O. et al. Peculiarities of the magnetocaloric properties in Ni–Mn–Sn ferromagnetic shape memory alloys. Phys. Rev. B 81, 214406 (2010).

    Article  Google Scholar 

  19. Moya, X. et al. Cooling and heating by adiabatic magnetization in the Ni50Mn34In16 magnetic shape-memory alloy. Phys. Rev. B 75, 184412 (2007).

    Article  Google Scholar 

  20. Aksoy, S. et al. Tailoring magnetic and magnetocaloric properties of martensitic transitions in ferromagnetic Heusler alloys. Appl. Phys. Lett. 91, 241916 (2007).

    Article  Google Scholar 

  21. Bourgault, D., Tillier, J., Courtois, P., Maillard, D. & Chaud, X. Large inverse magnetocaloric effect in Ni45Co5Mn37.5In12.5 single crystal above 300 K. Appl. Phys. Lett. 96, 132501 (2007).

    Article  Google Scholar 

  22. Khan, M., Ali, N. & Stadler, S. Inverse magnetocaloric effect in ferromagnetic Ni50Mn37+xSb13−x Heusler alloys. J. Appl. Phys. 101, 053919 (2007).

    Article  Google Scholar 

  23. Caron, L. et al. On the determination of the magnetic entropy change in materials with first-order transitions. J. Magn. Magn. Mater. 321, 3559–3566 (2009).

    Article  CAS  Google Scholar 

  24. Liu, J., Scheerbaum, N., Lyubina, J. & Gutfleisch, O. Reversibility of magnetostructural transition and associated magnetocaloric effect in Ni–Mn–In–Co. Appl. Phys. Lett. 93, 102512 (2008).

    Article  Google Scholar 

  25. Umetsu, R. Y. et al. The effect of Co substitution on the magnetic properties of the Heusler alloy Ni50Mn33Sb17 . Appl. Phys. Lett. 98, 042507 (2011).

    Article  Google Scholar 

  26. Pecharsky, V. K., Gschneidner, K. A. Jr, Pecharsky, A. O. & Tishin, A. M. Thermodynamics of the magnetocaloric effect. Phys Rev. B 64, 144406 (2001).

    Article  Google Scholar 

  27. Zverev, V. I., Tishin, A. M. & Kuz’min, M. D. The maximum possible magnetocaloric ΔT effect. J. Appl. Phys. 107, 043907 (2010).

    Article  Google Scholar 

  28. Ortin, J. & Planes, A. Thermodynamics of thermoelastic martensitic transformations. Acta Metall. 37, 1433–1441 (1989).

    Article  CAS  Google Scholar 

  29. Shamberger, P. J. & Ohuchi, F. S. Hysteresis of the martensitic phase transition in magnetocaloric-effect Ni–Mn–Sn alloys. Phys Rev. B 79, 144407 (2009).

    Article  Google Scholar 

  30. Krenke, T. et al. Hysteresis effects in the magnetic-field-induced reverse martensitic transition in magnetic shape-memory alloys. J. Appl. Phys. 108, 043914 (2010).

    Article  Google Scholar 

  31. Basso, V., Sasso, C. P. & LoBue, M. Thermodynamic aspects of first-order phase transformations with hysteresis in magnetic materials. J. Magn. Magn. Mater. 316, 262–268 (2007).

    Article  CAS  Google Scholar 

  32. Pecharsky, V. K. & Gschneidner, K. A. Jr in A. Magnetism and Structure in Functional Materials (eds Planes, A. et al.) Ch. 11 (Springer Series on Materials Science, Springer, 2006).

    Google Scholar 

  33. Morrison, K., Moore, J. D., Sandeman, K. G., Caplin, A. D. & Cohen, L. F. Capturing first- and second-order behavior in magnetocaloric CoMnSi0.92Ge0.08 . Phys. Rev. B 79, 134408 (2009).

    Article  Google Scholar 

  34. Magen, C., Morellon, L. & Algarabel, P. A. et al. Hydrostatic pressure control of the magnetostructural phase transition in Gd5Si2Ge2 single crystals. Phys. Rev. B 72, 024416 (2005).

    Article  Google Scholar 

  35. Manosa, L., Moya, X., Planes, A., Gutfleisch, O. & Lyubina, J. et al. Effects of hydrostatic pressure on the magnetism and martensitic transition of Ni–Mn–In magnetic superelastic alloys. Appl. Phys. Lett. 92, 012515 (2008).

    Article  Google Scholar 

  36. Muthu, S. E. et al. Hydrostatic pressure effect on the martensitic transition, magnetic, and magnetocaloric properties in Ni50−xMn37+xSn13 Heusler alloys. J. Appl. Phys. 110, 083902 (2011).

    Article  Google Scholar 

  37. Oliveira, N. A. Entropy change upon magnetic field and pressure varitions. Appl. Phys. Lett. 90, 052501 (2007).

    Article  Google Scholar 

  38. Bhattacharya, K. & James, R. D. The material is the machine. Science 307, 53–54 (2005).

    Article  CAS  Google Scholar 

  39. Zarnetta, R., Takahashi, R. & Young, M. L. et al. Identification of quaternary shape memory alloys with near-zero thermal hysteresis and unprecedented functional stability. Adv. Funct. Mater. 20, 1917–1923 (2010).

    Article  CAS  Google Scholar 

  40. Krenke, T. et al. Magnetic superelasticity and inverse magnetocaloric effect in Ni–Mn–In. Phys. Rev. B 75, 104414 (2007).

    Article  Google Scholar 

  41. Srivastava, V., Song, Y. T., Bhatti, K. & James, R. D. The direct conversion of heat to electricity using multiferroic alloys. Adv. Energy Mater. 1, 97–104 (2011).

    Article  CAS  Google Scholar 

  42. Cui, J. et al. Combinatorial search of the thermoelastic shape-memory alloys with extremely small hysteresis width. Nature Mater. 5, 286–290 (2006).

    Article  CAS  Google Scholar 

  43. Ito, W. et al. Atomic ordering and magnetic properties in the Ni45Co5Mn36.7In13.3 metamagnetic shape memory alloy. Appl. Phys. Lett. 93, 232503 (2008).

    Article  Google Scholar 

  44. Flores, R., Franco, V., Conde, A., Knipling, K. E. & Willard, M. A. Optimization of the refrigerant capacity in multiphase magnetocaloric materials. Appl. Phys. Lett. 98, 102505 (2011).

    Article  Google Scholar 

  45. Yu, S. Y. et al. Magnetic field-induced martensitic transformation and large magnetoresistance in NiCoMnSb. Appl. Phys. Lett. 90, 242501 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received financial support from Deutsche Forschungsgemeinschaft (SPP 1239) and the European Community’s 7th Framework Programme under grant agreement No. 214864 (SSEEC). Thanks to K. Nenkov for technical support and to M. D. Kuz’min, K. H. Müller and K.G. Sandeman for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

J.L., K.P.S. and T.G. designed and performed the experiments. J.L., K.P.S., T.G. and J.D.M. analysed the data. J.L. wrote the manuscript with the support of J.D.M.,T.G. and O.G. O.G. led projects.

Corresponding authors

Correspondence to Jian Liu or Tino Gottschall.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1466 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Gottschall, T., Skokov, K. et al. Giant magnetocaloric effect driven by structural transitions. Nature Mater 11, 620–626 (2012). https://doi.org/10.1038/nmat3334

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3334

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing