Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Current-induced torques in magnetic materials

Abstract

The magnetization of a magnetic material can be reversed by using electric currents that transport spin angular momentum. In the reciprocal process a changing magnetization orientation produces currents that transport spin angular momentum. Understanding how these processes occur reveals the intricate connection between magnetization and spin transport, and can transform technologies that generate, store or process information via the magnetization direction. Here we explain how currents can generate torques that affect the magnetic orientation and the reciprocal effect in a wide variety of magnetic materials and structures. We also discuss recent state-of-the-art demonstrations of current-induced torque devices that show great promise for enhancing the functionality of semiconductor devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of current-induced torques.
Figure 2: Current-induced torque sample geometries.
Figure 3: Illustration of the LLGS dynamics (equation 1).
Figure 4: A head-to-head magnetic domain wall.
Figure 5: Spin pumping from a ferromagnet via an adjacent normal metal gives rise to a spin-transfer torque on a second ferromagnet.
Figure 6: Three different concepts for magnetic random access memories.
Figure 7: Schematic of racetrack memory.

Similar content being viewed by others

References

  1. Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).

    CAS  Google Scholar 

  2. Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    CAS  Google Scholar 

  3. Tsoi, M. et al. Excitation of a magnetic multilayer by an electric current. Phys. Rev. Lett. 80, 4281–4284 (1998).

    CAS  Google Scholar 

  4. Myers, E. B., Ralph, D. C., Katine, J. A., Louie, R. N. & Buhrman, R. A. Current-induced switching of domains in magnetic multilayer devices. Science 285, 867–870 (1999).

    CAS  Google Scholar 

  5. Sun, J. Z. Spin-current interaction with a monodomain magnetic body: A model study. Phys. Rev. B 62, 570–578 (2000).

    CAS  Google Scholar 

  6. Slowczewski, J. C. Excitation of spin waves by an electric current. J. Magn. Magn. Mater. 195, L261–L268 (1999).

    Google Scholar 

  7. Katine, J. A., Albert, F. J., Buhrman, R. A., Myers, E. B. & Ralph, D. C. Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars. Phys. Rev. Lett. 84, 3149–3152 (2000).

    CAS  Google Scholar 

  8. Ozyilmaz, B. et al. Current-induced magnetization reversal in high magnetic fields in Co/Cu/Co nanopillars. Phys. Rev. Lett. 91, 067203 (2003).

    CAS  Google Scholar 

  9. Cucchiara, J. et al. Current-induced magnetization reversal in terms of power dissipation. Phys. Rev. B 84, 100405 (2011).

    Google Scholar 

  10. Özyilmaz, B., Kent, A. D., Sun, J. Z., Rooks, M. J. & Koch, R. H. Current-induced excitations in single cobalt ferromagnetic layer nanopillars. Phys. Rev. Lett. 93, 176604 (2004).

    Google Scholar 

  11. Kiselev, S. I. et al. Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425, 380–383 (2003).

    CAS  Google Scholar 

  12. Brataas, A., Tserkovnyak, Y. & Bauer, G. E. W. Scattering theory of Gilbert damping. Phys. Rev. Lett. 101, 037207 (2008).

    Google Scholar 

  13. Starikov, A. A., Kelly, P. J., Brataas, A., Tserkovnyak, Y. & Bauer, G. E. W. Unified first-principles study of Gilbert damping, spin-flip diffusion, and resistivity in transition metal alloys. Phys. Rev. Lett. 105, 236601 (2010).

    Google Scholar 

  14. Brataas, A., Nazarov, Y. V. & Bauer, G. E. W. Finite-element theory of transport in ferromagnet–normal metal systems. Phys. Rev. Lett. 84, 2481–2484 (2000).

    CAS  Google Scholar 

  15. Kovalev, A. A., Brataas, A. & Bauer, G. E. W. Spin transfer in diffusive ferromagnet-normal metal systems with spin-flip scattering. Phys. Rev. B 66, 224424 (2002).

    Google Scholar 

  16. Brataas, A., Bauer, G. E. W. & Kelly, P. J. Non-collinear magnetoelectronics. Phys. Rep. 427, 157–255 (2006).

    CAS  Google Scholar 

  17. Xia, K., Kelly, P. J., Bauer, G. E. W., Brataas, A. & Turek, I. Spin torques in ferromagnetic/normal-metal structures. Phys. Rev. B 65, 220401 (2002).

    Google Scholar 

  18. Zimmler, M. A. et al. Current-induced effective magnetic fields in Co<0x2215>Cu<0x2215>Co nanopillars. Phys. Rev. B 70, 184438 (2004).

    Google Scholar 

  19. Waintal, X., Myers, E. B., Brouwer, P. W. & Ralph, D. C. Role of spin-dependent interface scattering in generating current-induced torques in magnetic multilayers. Phys. Rev. B 62, 12317 (2000).

    CAS  Google Scholar 

  20. Brataas, A., Nazarov, Y. V. & Bauer, G. E. W. Spin-transport in multi-terminal normal metal-ferromagnet systems with non-collinear magnetizations. Eur. Phys. J. B 22, 99–110 (2001).

    CAS  Google Scholar 

  21. Rychkov, V. S., Borlenghi, S., Jaffres, H., Fert, A. & Waintal, X. Spin torque and waviness in magnetic multilayers: A bridge between Valet–Fert theory and quantum approaches. Phys. Rev. Lett. 103, 066602 (2009).

    Google Scholar 

  22. Stiles, M. D. & Zangwill, A. Anatomy of spin-transfer torque. Phys. Rev. B 66, 014407 (2002).

    Google Scholar 

  23. Julliere, M. Tunneling between ferromagnetic films. Phys. Lett. A 54, 225–226 (1975).

    Google Scholar 

  24. Maekawa, S. & Gafvert, U. Electron tunneling between ferromagnetic films. IEEE Trans. Magn. 18, 707–708 (1982).

    Google Scholar 

  25. Miyazaki, T. & Tezuka, N. Giant magnetic tunneling effect in Fe/Al2O3/Fe junction. J. Magn. Magn. Mater. 139, L231–L234 (1995).

    CAS  Google Scholar 

  26. Moodera, J. S., Kinder, L. R., Wong, T. M. & Meservey, R. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74, 3273–3276 (1995).

    CAS  Google Scholar 

  27. Butler, W. H., Zhang, X. G., Schulthess, T. C. & MacLaren, J. M. Spin-dependent tunneling conductance of Fe|MgO|Fe sandwiches. Phys. Rev. B 63, 054416 (2001).

    Google Scholar 

  28. Mathon, J. & Umerski, A. Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe(001) junction. Phys. Rev. B 63, 220403 (2001).

    Google Scholar 

  29. Parkin, S. S. P. et al. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nature Mater. 3, 862–867 (2004).

    CAS  Google Scholar 

  30. Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y. & Ando, K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nature Mater. 3, 868–871 (2004).

    CAS  Google Scholar 

  31. Ikeda, S. et al. Tunnel magnetoresistance of 604% at 300 K by suppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature. Appl. Phys. Lett. 93, 082508 (2008).

    Google Scholar 

  32. Huai, Y., Albert, F., Nguyen, P., Pakala, M. & Valet, T. Observation of spin-transfer switching in deep submicron-sized and low-resistance magnetic tunnel junctions. Appl. Phys. Lett. 84, 3118–3120 (2004).

    CAS  Google Scholar 

  33. Diao, Z. et al. Spin transfer switching and spin polarization in magnetic tunnel junctions with MgO and AlOx barriers. Appl. Phys. Lett. 87, 232502–232503 (2005).

    Google Scholar 

  34. Hitoshi, K. et al. Evaluation of spin-transfer switching in CoFeB/MgO/CoFeB magnetic tunnel junctions. Jpn. J. Appl. Phys. 44, L1237–L1240 (2005).

    Google Scholar 

  35. Jun, H. et al. Current-driven magnetization switching in CoFeB/MgO/CoFeB magnetic tunnel junctions. Jpn. J. Appl. Phys. 44, L1267–L1270 (2005).

    Google Scholar 

  36. Sankey, J. C. et al. Measurement of the spin-transfer-torque vector in magnetic tunnel junctions. Nature Phys. 4, 67–71 (2008).

    CAS  Google Scholar 

  37. Kubota, H. et al. Quantitative measurement of voltage dependence of spin-transfer torque in MgO-based magnetic tunnel junctions. Nature Phys. 4, 37–41 (2008).

    CAS  Google Scholar 

  38. Theodonis, I., Kioussis, N., Kalitsov, A., Chshiev, M. & Butler, W. H. Anomalous bias dependence of spin torque in magnetic tunnel junctions. Phys. Rev. Lett. 97, 237205 (2006).

    Google Scholar 

  39. Xiao, J., Bauer, G. E. W. & Brataas, A. Spin-transfer torque in magnetic tunnel junctions: Scattering theory. Phys. Rev. B 77, 224419 (2008).

    Google Scholar 

  40. Min, T., Sun, J. Z., Beach, R., Tang, D. & Wang, P. Back-hopping after spin torque transfer induced magnetization switching in magnetic tunneling junction cells. J. Appl. Phys. 105, 07D126 (2009).

    Google Scholar 

  41. Oh, S-C. et al. Bias-voltage dependence of perpendicular spin-transfer torque in asymmetric MgO-based magnetic tunnel junctions. Nature Phys. 5, 898–902 (2009).

    CAS  Google Scholar 

  42. Berger, L. Low-field magnetoresistance and domain drag in ferromagnets. J. Appl. Phys. 49, 2516–2161 (1978).

    Google Scholar 

  43. Freitas, P. P. & Berger, L. Observation of s-d exchange force between domain walls and electric current in very thin permalloy films. J. Appl. Phys. 57, 1266–1269 (1985).

    CAS  Google Scholar 

  44. Yamaguchi, A. et al. Real-space observation of current-driven domain wall motion in submicron magnetic wires. Phys. Rev. Lett. 92, 077205 (2004).

    CAS  Google Scholar 

  45. Vernier, N., Allwood, D. A., Atkinson, D., Cooke, M. D. & Cowburn, R. P. Domain wall propagation in magnetic nanowires by spin-polarized current injection. Europhys. Lett. 65, 526–532 (2004).

    CAS  Google Scholar 

  46. Kläui, M. et al. Controlled and reproducible domain wall displacement by current pulses injected into ferromagnetic ring structures. Phys. Rev. Lett. 94, 106601 (2005).

    Google Scholar 

  47. Hayashi, M. et al. Influence of current on field-driven domain wall motion in permalloy nanowires from time resolved measurements of anisotropic magnetoresistance. Phys. Rev. Lett. 96, 197207 (2006).

    CAS  Google Scholar 

  48. Yamanouchi, M., Chiba, D., Matsukura, F. & Ohno, H. Current-induced domain-wall switching in a ferromagnetic semiconductor structure. Nature 428, 539–542 (2004).

    CAS  Google Scholar 

  49. Zhang, S. & Li, Z. Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets. Phys. Rev. Lett. 93, 127204 (2004).

    CAS  Google Scholar 

  50. Thiaville, A., Nakatani, Y., Miltat, J. & Suzuki, Y. Micromagnetic understanding of current-driven domain wall motion in patterned nanowires. Europhys. Lett. 69, 990–996 (2005).

    CAS  Google Scholar 

  51. Tatara, G. & Kohno, H. Theory of current-driven domain wall motion: Spin transfer versus momentum transfer. Phys. Rev. Lett. 92, 086601 (2004).

    Google Scholar 

  52. Barnes, S. E. & Maekawa, S. Current-spin coupling for ferromagnetic domain walls in fine wires. Phys. Rev. Lett. 95, 107204 (2005).

    CAS  Google Scholar 

  53. Tserkovnyak, Y., Skadsem, H. J., Brataas, A. & Bauer, G. E. W. Current-induced magnetization dynamics in disordered itinerant ferromagnets. Phys. Rev. B 74, 144405 (2006).

    Google Scholar 

  54. Kohno, H., Tatara, G. & Shibata, J. Microscopic calculation of spin torques in disordered ferromagnets. J. Phys. Soc. Jpn 75, 113706 (2006).

    Google Scholar 

  55. Eltschka, M. et al. Nonadiabatic spin torque investigated using thermally activated magnetic domain wall dynamics. Phys. Rev. Lett. 105, 056601 (2010).

    CAS  Google Scholar 

  56. Heyne, L. et al. Direct determination of large spin-torque nonadiabaticity in vortex core dynamics. Phys. Rev. Lett. 105, 187203 (2010).

    CAS  Google Scholar 

  57. Yamanouchi, M., Chiba, D., Matsukura, F., Dietl, T. & Ohno, H. Velocity of domain-wall motion induced by electrical current in the ferromagnetic semiconductor (Ga,Mn)As. Phys. Rev. Lett. 96, 096601 (2006).

    CAS  Google Scholar 

  58. Koyama, T. et al. Observation of the intrinsic pinning of a magnetic domain wall in a ferromagnetic nanowire. Nature Mater. 10, 194–197 (2011).

    CAS  Google Scholar 

  59. Tatara, G. et al. Threshold current of domain wall motion under extrinsic pinning, β-term and non-adiabaticity. J. Phys. Soc. Jpn 75, 064708 (2006).

    Google Scholar 

  60. Jung, S. Current-induced domain wall motion in a nanowire with perpendicular magnetic anisotropy. Appl. Phys. Lett. 92, 202508 (2008).

    Google Scholar 

  61. Yamanouchi, M. et al. Universality classes for domain wall motion in the ferromagnetic semiconductor (Ga,Mn)As. Science 317, 1726–1729 (2007).

    CAS  Google Scholar 

  62. San Emeterio Alvarez, L. et al. Spin-transfer-torque-assisted domain-wall creep in a Co/Pt multilayer wire. Phys. Rev. Lett. 104, 137205 (2010).

    CAS  Google Scholar 

  63. Lee, J-C. et al. Universality classes of magnetic domain wall motion. Phys. Rev. Lett. 107, 067201 (2011).

    Google Scholar 

  64. Mihai Miron, I. et al. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nature Mater. 9, 230–234 (2010).

    CAS  Google Scholar 

  65. Liu, L., Lee, O. J., Gudmundsen, T. J., Ralph, D. C. & Buhrman, R. A. Magnetic switching by spin torque from the spin Hall effect. Preprint at http://arXiv.org/abs/1110.6846 (2011).

  66. Tserkovnyak, Y. & Mecklenburg, M. Electron transport driven by nonequilibrium magnetic textures. Phys. Rev. B 77, 134407 (2008).

    Google Scholar 

  67. Brataas, A., Tserkovnyak, Y., Bauer, G. E. W. & Kelly, P. J. Spin pumping and spin transfer. Preprint at http://arXiv.org/abs/1108.0385 (2011).

  68. Barnes, S. E. The effect that finite lattice spacing has upon the ESR Bloch equations. J. Phys. F 4, 1535–1551 (1974).

    CAS  Google Scholar 

  69. Janossy, A. & Monod, P. Spin waves for single electrons in paramagnetic metals. Phys. Rev. Lett. 37, 612–615 (1976).

    CAS  Google Scholar 

  70. Silsbee, R. H., Janossy, A. & Monod, P. Coupling between ferromagnetic and conduction-spin-resonance modes at a ferromagnetic–normal-metal interface. Phys. Rev. B 19, 4382–4399 (1979).

    CAS  Google Scholar 

  71. Brataas, A., Tserkovnyak, Y., Bauer, G. E. W. & Halperin, B. I. Spin battery operated by ferromagnetic resonance. Phys. Rev. B 66, 060404 (2002).

    Google Scholar 

  72. Tserkovnyak, Y., Brataas, A., Bauer, G. E. W. & Halperin, B. I. Nonlocal magnetization dynamics in ferromagnetic heterostructures. Rev. Mod. Phys. 77, 1375–1421 (2005).

    CAS  Google Scholar 

  73. Tserkovnyak, Y., Brataas, A. & Bauer, G. E. W. Enhanced Gilbert damping in thin ferromagnetic films. Phys. Rev. Lett. 88, 117601 (2002).

    Google Scholar 

  74. Mizukami, S., Ando, Y. & Miazaki, T. The study on ferromagnetic resonance linewidth for NM/80NiFe/NM (NM=Cu, Ta, Pd and Pt) Films. Jpn. J. Appl. Phys. 40, 580–585 (2001).

    CAS  Google Scholar 

  75. Mizukami, S., Ando, Y. & Miyazaki, T. Effect of spin diffusion on Gilbert damping for a very thin permalloy layer in Cu/permalloy/Cu/Pt films. Phys. Rev. B 66, 104413 (2002).

    Google Scholar 

  76. Heinrich, B. et al. Dynamic exchange coupling in magnetic bilayers. Phys. Rev. Lett. 90, 187601 (2003).

    Google Scholar 

  77. Urban, R., Woltersdorf, G. & Heinrich, B. Gilbert damping in single and multilayer ultrathin films: Role of interfaces in nonlocal spin dynamics. Phys. Rev. Lett. 87, 217204 (2001).

    CAS  Google Scholar 

  78. Kajiwara, Y. et al. Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 464, 262–266 (2010).

    CAS  Google Scholar 

  79. Hirsch, J. E. Spin Hall effect. Phys. Rev. Lett. 83, 1834–1837 (1999).

    CAS  Google Scholar 

  80. Valenzuela, S. O. & Tinkham, M. Direct electronic measurement of the spin Hall effect. Nature 442, 176–179 (2006).

    CAS  Google Scholar 

  81. Tserkovnyak, Y., Brataas, A. & Bauer, G. E. W. Enhanced Gilbert damping in thin ferromagnetic films. Phys. Rev. Lett. 88, 117601 (2002).

    Google Scholar 

  82. Volovik, G. E. Linear momentum in ferromagnets. J. Phys. C 20, L83–L87 (1987).

    Google Scholar 

  83. Duine, R. A. Spin pumping by a field-driven domain wall. Phys. Rev. B 77, 014409 (2008).

    Google Scholar 

  84. Barnes, S. E. & Maekawa, S. Generalization of Faraday's law to include nonconservative spin forces. Phys. Rev. Lett. 98, 246601 (2007).

    CAS  Google Scholar 

  85. Yang, S. A. et al. Universal electromotive force induced by domain wall motion. Phys. Rev. Lett. 102, 067201 (2009).

    Google Scholar 

  86. Manchon, A. & Zhang, S. Theory of nonequilibrium intrinsic spin torque in a single nanomagnet. Phys. Rev. B 78, 212405 (2008).

    Google Scholar 

  87. Manchon, A. & Zhang, S. Theory of spin torque due to spin–orbit coupling. Phys. Rev. B 79, 094422 (2009).

    Google Scholar 

  88. Hals, K. M. D. et al. Scattering theory of charge-current-induced magnetization dynamics. Europhys. Lett. 90, 47002 (2010).

    Google Scholar 

  89. Haney, P. M. & Stiles, M. D. Current-induced torques in the presence of spin–orbit coupling. Phys. Rev. Lett. 105, 126602 (2010).

    Google Scholar 

  90. Chernyshov, A. et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin–orbit magnetic field. Nature Phys. 5, 656–659 (2009).

    CAS  Google Scholar 

  91. Manchon, A. Interfacial spin–orbit splitting and current-driven spin torque in anisotropic tunnel junctions. Phys. Rev. B 83, 172403 (2011).

    Google Scholar 

  92. Demokritov, S. O. et al. Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping. Nature 443, 430–433 (2006).

    CAS  Google Scholar 

  93. Nunez, A. S., Duine, R. A., Haney, P. & MacDonald, A. H. Theory of spin torques and giant magnetoresistance in antiferromagnetic metals. Phys. Rev. B 73, 214426 (2006).

    Google Scholar 

  94. Haney, P. M. & MacDonald, A. H. Current-induced torques due to compensated antiferromagnets. Phys. Rev. Lett. 100, 196801 (2008).

    Google Scholar 

  95. Swaving, A. C. & Duine, R. A. Current-induced torques in continuous antiferromagnetic textures. Phys. Rev. B 83, 054428 (2011).

    Google Scholar 

  96. Hals, K. M. D., Tserkovnyak, Y. & Brataas, A. Phenomenology of current-induced dynamics in antiferromagnets. Phys. Rev. Lett. 106, 107206 (2011).

    Google Scholar 

  97. Urazhdin, S. & Anthony, N. Effect of polarized current on the magnetic state of an antiferromagnet. Phys. Rev. Lett. 99, 046602 (2007).

    Google Scholar 

  98. Shick, A. B., Khmelevskyi, S., Mryasov, O. N., Wunderlich, J. & Jungwirth, T. Spin–orbit coupling induced anisotropy effects in bimetallic antiferromagnets: A route towards antiferromagnetic spintronics. Phys. Rev. B 81, 212409 (2010).

    Google Scholar 

  99. Maca, F. et al. CuMn–V compounds: a transition from semimetal low-temperature to semiconductor high-temperature antiferromagnets. Preprint at http://arXiv.org/abs/1102.5373 (2011).

  100. Shiota, Y. et al. Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses. Nature Mater. 11, 39–43 (2012).

    CAS  Google Scholar 

  101. Ohno, H. et al. Electric-field control of ferromagnetism. Nature 408, 944–946 (2000).

    CAS  Google Scholar 

  102. Weisheit, M. et al. Electric field-induced modification of magnetism in thin-film ferromagnets. Science 315, 349–351 (2007).

    CAS  Google Scholar 

  103. Chiba, D. et al. Magnetization vector manipulation by electric fields. Nature 455, 515–518 (2008).

    CAS  Google Scholar 

  104. Maruyama, T. et al. Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nature Nanotech. 4, 158–161 (2009).

    CAS  Google Scholar 

  105. Endo, M., Kanai, S., Ikeda, S., Matsukura, F. & Ohno, H. Electric-field effects on thickness dependent magnetic anisotropy of sputtered MgO/Co40Fe40B20/Ta structures. Appl. Phys. Lett. 96, 212503 (2010).

    Google Scholar 

  106. Chiba, D., Yamanouchi, M., Matsukura, F. & Ohno, H. Electrical manipulation of magnetization reversal in a ferromagnetic semiconductor. Science 301, 943–945 (2003).

    CAS  Google Scholar 

  107. Hosomi, M. et al. in Electron Devices Meeting (IEDM) 459–462 (IEEE, 2005).

    Google Scholar 

  108. Kawahara, T. et al. in Solid-State Circuits Conference, ISSCC 2007 480–617 (IEEE, 2007).

    Google Scholar 

  109. Takemura, R. et al. in VLSI Circuits, 2009 Symp. 84–85 (IEEE, 2009).

    Google Scholar 

  110. Tsuchida, K. et al. in Solid-State Circuits Conference 258–259 (IEEE, 2010).

    Google Scholar 

  111. Ikeda, S. et al. A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Nature Mater. 9, 721–724 (2010).

    CAS  Google Scholar 

  112. Devolder, T. et al. Single-shot time-resolved measurements of nanosecond-scale spin-transfer induced switching: Stochastic versus deterministic aspects. Phys. Rev. Lett. 100, 057206 (2008).

    CAS  Google Scholar 

  113. Bedau, D. et al. Spin-transfer pulse switching: From the dynamic to the thermally activated regime. Appl. Phys. Lett. 97, 262502 (2010).

    Google Scholar 

  114. Kent, A. D., Ozyilmaz, B. & del Barco, E. Spin-transfer-induced precessional magnetization reversal. Appl. Phys. Lett. 84, 3897 (2004).

    CAS  Google Scholar 

  115. Liu, H. et al. Ultrafast switching in magnetic tunnel junction based orthogonal spin transfer devices. Appl. Phys. Lett. 97, 242510 (2010).

    Google Scholar 

  116. Sun, J. Z. et al. A three-terminal spin-torque-driven magnetic switch. Appl. Phys. Lett. 95, 083506 (2009).

    Google Scholar 

  117. Matsunaga, S. et al. Fabrication of a nonvolatile full adder based on logic-in-memory architecture using magnetic tunnel junctions. Appl. Phys. Exp. 1, 091301 (2008).

    Google Scholar 

  118. Matsunaga, S. et al. in VLSI Circuits (VLSIC), 2011 Symp. 298–299 (IEEE, 2011).

    Google Scholar 

  119. Endoh, T. et al. in Electron Devices Meeting (IEDM) 2011 4.3.1–4.3.4. (IEEE, 2011).

    Google Scholar 

  120. Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).

    CAS  Google Scholar 

  121. Thomas, L. et al. in Electron Devices Meeting (IEDM) 24.22.21–24.22.24 (IEEE, 2011).

    Google Scholar 

  122. Annunziata, A. J. et al. in Electron Devices Meeting (IEDM) 24.23.21–24.23.24 (IEEE, 2011).

    Google Scholar 

  123. Tanaka, M. & Sugahara, S. MOS-based spin devices for reconfigurable logic. IEEE Trans. Electron. Dev. 54, 961–976 (2007).

    CAS  Google Scholar 

  124. Dery, H. et al. Nanospintronics based on magnetologic gates. IEEE Trans. Electron. Dev. 59, 259–262 (2012).

    CAS  Google Scholar 

  125. Xiaofeng, Y. et al. Magnetic tunnel junction-based spintronic logic units operated by spin transfer torque. IEEE Trans. Nanotechnol. 11, 120–126 (2012).

    Google Scholar 

  126. Kostylev, M. P., Serga, A. A., Schneider, T., Leven, B. & Hillebrands, B. Spin-wave logical gates. Appl. Phys. Lett. 87, 153501 (2005).

    Google Scholar 

Download references

Acknowledgements

We acknowledge useful discussions with Ferran Macia at New York University, who prepared some figures for the manuscript. A.B. was supported by EU-ICT-7 contract no. 257159 MACALO – Magneto Caloritronics. A.D.K. was supported by the National Science Foundation, the US Army Research Office and Spin-Transfer Technologies. HO was supported by the FIRST program of the Japan Society for the Promotion of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Brataas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brataas, A., Kent, A. & Ohno, H. Current-induced torques in magnetic materials. Nature Mater 11, 372–381 (2012). https://doi.org/10.1038/nmat3311

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3311

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing