Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Whither the oxide interface

Interfaces formed by transition-metal oxide materials offer a tremendous opportunity for fundamental as well as applied research. Yet, as exciting as these opportunities are, several challenges remain.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of control parameters available at oxide interfaces.
Figure 2: Designing oxide interfaces.
Figure 3: Schematic of a 'Mott transistor' with oxide channel material (white) and top gate and substrate (blue), showing the electronic density of states (DOS) calculated from single-site dynamical mean field theory.

References

  1. Mannhart, J., Blank, D. H. A., Hwang, H. Y., Millis, A. J. & Triscone, J. M. Mater. Res. Soc. Bull. 33, 1027–1034 (2008).

    Article  CAS  Google Scholar 

  2. Hwang, H. Y. et al. Nature Mater. 11, 103–113 (2012).

    Article  CAS  Google Scholar 

  3. Lichtenstein, A. I. & Katsnelson, M. I. Phys. Rev. B 57, 6884–6895 (1998).

    Article  CAS  Google Scholar 

  4. Kotliar, G. et al. Rev. Mod. Phys. 78, 865–952 (2006).

    Article  CAS  Google Scholar 

  5. Held, K. et al. Phys. Status Solidi 243, 2599–2631 (2006).

    Article  CAS  Google Scholar 

  6. Schollwöck, U. Rev. Mod. Phys. 77, 259–315 (2005).

    Article  Google Scholar 

  7. Tokura, Y. & Nagaosa, N. Science 288, 462–468 (2000).

    Article  CAS  Google Scholar 

  8. Franceschetti, A. & Zunger, A. Nature 402, 60–63 (1999).

    Article  CAS  Google Scholar 

  9. Trimarchi, G. et al. Phys. Rev. B 84, 165116 (2011).

    Article  Google Scholar 

  10. Rondinelli, J. M. & Spaldin, N. A. Adv. Mater. 23, 3363–3381 (2011).

    Article  CAS  Google Scholar 

  11. Yang, K-Y. et al. Phys. Rev. B 84, 201104 (2011).

    Article  Google Scholar 

  12. Rüegg, A. & Fiete, G. A. Phys. Rev. B 84, 201103 (2011).

    Article  Google Scholar 

  13. Xiao, D., Zhu, W., Ran, Y., Nagaosa, N. & Okamoto, S. Preprint at http://arXiv.org/abs/1106.4296 (2011).

  14. Gray, B., Lee, H. N., Liu, J., Chakhalian, J. & Freeland, J. W. Appl. Phys. Lett. 97, 013105 (2010).

    Article  Google Scholar 

  15. Ležaić, M. & Spaldin, N. A. Phys. Rev. B 83, 024410 (2011).

    Article  Google Scholar 

  16. Kaul, A. R., Gorbenko, O. Y. & Kamenev, A. A. Russ. Chem. Rev. 73, 861–880 (2004).

    Article  CAS  Google Scholar 

  17. Chakhalian, J. et al. Phys. Rev. Lett. 107, 116805 (2011).

    Article  CAS  Google Scholar 

  18. May, S. et al. Phys. Rev. B 82, 014110 (2010).

    Article  Google Scholar 

  19. Gardner, G. P. et al. Angew. Chem. Int. Ed. (in the press).

  20. Burton, J. D. & Tsymbal, E. Y. Phys. Rev. Lett. 107, 166601 (2011).

    Article  CAS  Google Scholar 

  21. Inoue, I. H. & Rozenberg, M. J. Adv. Funct. Mater. 18, 2289–2292 (2008).

    Article  CAS  Google Scholar 

  22. Yang, Z., Ko, C. & Ramanathan, S. Ann. Rev. Mater. Res. 41, 337–367 (2011).

    Article  CAS  Google Scholar 

  23. Goodenough, J. B. & Cushing, B. L. Handbook of Fuel Cells – Fundamentals, Technology and Applications Vol. 2 Ch. 35, 520–533 (Wiley, 2003).

    Google Scholar 

  24. Adler, S. B. Chem. Rev. 104, 4791–4843 (2004).

    Article  CAS  Google Scholar 

  25. Nórskov, J. K. et al. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  Google Scholar 

  26. Hammer, B. & Norskov, J. K. Adv. Catal. 45, 71–129 (2000).

    CAS  Google Scholar 

  27. Suntivich, J. et al. Nature Chem. 3, 546–550 (2011).

    Article  CAS  Google Scholar 

  28. Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B. & Shao-Horn, Y. Science, 334, 1383–1385 (2011).

    Article  CAS  Google Scholar 

  29. Lee, Y-L., Kleis, J., Rossmeisl, J., Shao-Horn, Y. & Morgan, D. Energ. Environ. Sci. 4, 3966–3970 (2011).

    Article  CAS  Google Scholar 

  30. Chaloupka, J. & Khaliullin, G. Phys. Rev. Lett. 100, 016404 (2008).

    Article  Google Scholar 

  31. Ohtomo, A., Muller, D. A., Grazul, J. L. & Hwang, H.Y. Nature 419, 378–380 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Chakhalian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakhalian, J., Millis, A. & Rondinelli, J. Whither the oxide interface. Nature Mater 11, 92–94 (2012). https://doi.org/10.1038/nmat3225

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3225

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing