Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An artificial biomineral formed by incorporation of copolymer micelles in calcite crystals

Abstract

Biominerals exhibit morphologies, hierarchical ordering and properties that invariably surpass those of their synthetic counterparts. A key feature of these materials, which sets them apart from synthetic crystals, is their nanocomposite structure, which derives from intimate association of organic molecules with the mineral host. We here demonstrate the production of artificial biominerals where single crystals of calcite occlude a remarkable 13?wt% of 20?nm anionic diblock copolymer micelles, which act as ‘pseudo-proteins’. The synthetic crystals exhibit analogous texture and defect structures to biogenic calcite crystals and are harder than pure calcite. Further, the micelles are specifically adsorbed on {104} faces and undergo a change in shape on incorporation within the crystal lattice. This system provides a unique model for understanding biomineral formation, giving insight into both the mechanism of occlusion of biomacromolecules within single crystals, and the relationship between the macroscopic mechanical properties of a crystal and its microscopic structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of the encapsulation of copolymer micelles within calcite single crystals.
Figure 2: TEM images of the copolymer micelles before and subsequent to incorporation in a calcite crystal.
Figure 3: SEM images of calcite crystals precipitated in the presence of copolymer micelles produced at a copolymer concentration of 70?μg?ml−1.
Figure 4: High-resolution synchrotron powder XRD data of calcite crystals occluding polymer micelles.
Figure 5: TEM analysis of a thin section cut through the nanocomposite crystal.
Figure 6: SEM and AFM images and AFM profiles of nano-indentation marks on a calcite control crystal and a nanocomposite crystal after nanoindentation.

Similar content being viewed by others

References

  1. Stephens, C. J., Ladden, S. F., Meldrum, F. C. & Christenson, H. K. Amorphous calcium carbonate is stabilised in confinement. Adv. Funct. Mater. 20, 2108–2115 (2010).

    Article  CAS  Google Scholar 

  2. Stephens, C. J., Kim, Y. Y., Meldrum, F. C. & Christenson, H. K. Early stages of crystallization of calcium carbonate revealed in picoliter droplets. J. Am. Chem. Soc. 133, 5210–5213 (2011).

    Article  CAS  Google Scholar 

  3. Weiner, S. & Addadi, L. Design strategies in mineralized biological materials. J. Mater. Chem. 7, 689–702 (1997).

    Article  CAS  Google Scholar 

  4. Belcher, A. M. et al. Control of crystal phase switching and orientation by soluble mollusc-shell proteins. Nature 381, 56–58 (1996).

    Article  CAS  Google Scholar 

  5. Berman, A. et al. Biological control of crystal texture: A widespread strategy for adapting crystal properties to function. Science 259, 776–779 (1993).

    Article  CAS  Google Scholar 

  6. Aizenberg, J. et al. Biologically-induced reduction in symmetry: A study of crystal texture of calcitic sponge spicules. Chem. Eur. J. 1, 414–422 (1995).

    Article  CAS  Google Scholar 

  7. Pokroy, B., Fitch, A. N. & Zolotoyabko, E. The microstructure of biogenic calcite: A view by high-resolution synchrotron powder diffraction. Adv. Mater. 18, 2363–2368 (2006).

    Article  CAS  Google Scholar 

  8. Zolotoyabko, E. et al. Differences between bond lengths in biogenic and geological calcite. Cryst. Growth Des. 10, 1207–1214 (2010).

    Article  CAS  Google Scholar 

  9. Gueta, R. et al. Local atomic order and infrared spectra of biogenic calcite. Angew. Chem. Int. Edn. 46, 291–294 (2007).

    Article  CAS  Google Scholar 

  10. Meldrum, F. C. & Colfen, H. Controlling mineral morphologies and structures in biological and synthetic systems. Chem. Rev. 108, 4332–4432 (2008).

    Article  CAS  Google Scholar 

  11. Sommerdijk, N. & de With, G. Biomimetic CaCO3 mineralization using designer molecules and interfaces. Chem. Rev. 108, 4499–4550 (2008).

    Article  CAS  Google Scholar 

  12. De Yoreo, J. J. & Vekilov, P. G. in Biomineralization Vol. 54 (eds Dove, P. M., DeYoreo, J. J. & Weiner, S.) 57–93 (Reviews in Mineralogy & Geochemistry, Mineralogical Soc. America, 2003).

    Book  Google Scholar 

  13. Weiner, S., Addadi, L. & Wagner, H. D. Materials design in biology. Mater. Sci. Eng. C 11, 1–8 (2000).

    Article  Google Scholar 

  14. Addadi, L. & Weiner, S. Interactions between acidic proteins and crystals—stereochemical requirements in biomineralization. Proc. Natl Acad. Sci. USA 82, 4110–4114 (1985).

    Article  CAS  Google Scholar 

  15. Elhadj, S. et al. Peptide controls on calcite mineralization: Polyaspartate chain length affects growth kinetics and acts as a stereochemical switch on morphology. Cryst. Growth Des. 6, 197–201 (2006).

    Article  CAS  Google Scholar 

  16. De Yoreo, J. J. et al. Rethinking classical crystal growth models through molecular scale insights: Consequences of kink-limited kinetics. Cryst. Growth Des. 9, 5135–5144 (2009).

    Article  CAS  Google Scholar 

  17. Gower, L. B. Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem. Rev. 108, 4551–4627 (2008).

    Article  CAS  Google Scholar 

  18. Robach, J. S., Stock, S. R. & Veis, A. Transmission electron microscopy characterization of macromolecular domain cavities and microstructure of single-crystal calcite tooth plates of the sea urchin Lytechinus variegatus. J. Struct. Biol. 151, 18–29 (2005).

    Article  CAS  Google Scholar 

  19. Gries, K., Kroger, R., Kubel, C., Fritz, M. & Rosenauer, A. Investigations of voids in the aragonite platelets of nacre. Acta Biomater. 5, 3038–3044 (2009).

    Article  CAS  Google Scholar 

  20. Berman, A., Addadi, L. & Weiner, S. Interactions of sea-urchin skeleton macomolecules with growing calcite crystals—a study of intracrystalline proteins. Nature 331, 546–548 (1988).

    Article  CAS  Google Scholar 

  21. Marin, F., Pokroy, B., Luquet, G., Layrolle, P. & De Groot, K. Protein mapping of calcium carbonate biominerals by immunogold. Biomaterials 28, 2368–2377 (2007).

    Article  CAS  Google Scholar 

  22. Sindhu, S. et al. Synthesis and patterning of luminescent CaCO3-poly(p-phenylene) hybrid materials and thin films. Adv. Funct. Mater. 17, 1698–1704 (2007).

    Article  CAS  Google Scholar 

  23. Metzler, R. A., Tribello, G. A., Parrinello, M. & Gilbert, P. Asprich peptides are occluded in calcite and permanently disorder biomineral crystals. J. Am. Chem. Soc. 132, 11585–11591 (2010).

    Article  CAS  Google Scholar 

  24. Russ, J. C. & Dehoff, R. T. Practical Stereology (Springer, 2000).

    Book  Google Scholar 

  25. Kahr, B. & Gurney, R. W. Dyeing crystals. Chem. Rev. 101, 893–951 (2001).

    Article  CAS  Google Scholar 

  26. Li, H. Y. & Estroff, L. A. Porous calcite single crystals grown from a hydrogel medium. CrystEngComm 9, 1153–1155 (2007).

    Article  CAS  Google Scholar 

  27. Chernov, A. A. in Springer Series in Solid State Sciences Vol. 36 (Springer, 1984).

    Google Scholar 

  28. Asthana, R. & Tewari, S. N. The engulfment of foreign particles by a freezing interface. J. Mater. Sci. 28, 5414–5425 (1993).

    Article  CAS  Google Scholar 

  29. Uhlmann, D. R., Chalmers, B. & Jackson, K. A. Interaction between particles + solid–liquid interface. J. Appl. Phys. 35, 2986–2993 (1964).

    Article  CAS  Google Scholar 

  30. Rempel, A. W. & Worster, M. G. The interaction between a particle and an advancing solidification front. J. Cryst. Growth 205, 427–440 (1999).

    Article  CAS  Google Scholar 

  31. Munoz-Espi, R., Qi, Y., Lieberwirth, I., Gomez, C. M. & Wegner, G. Surface-functionalized latex particles as controlling agents for the mineralization of zinc oxide in aqueous medium. Chem. Eur. J. 12, 118–129 (2006).

    Article  CAS  Google Scholar 

  32. Kim, Y. Y. et al. Bio-inspired synthesis and mechanical properties of calcite–polymer particle composites. Adv. Mater. 22, 2082–2086 (2010).

    Article  CAS  Google Scholar 

  33. Beniash, E., Aizenberg, J., Addadi, L. & Weiner, S. Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth. Proc. R. Soc. Lond. B 264, 461–465 (1997).

    Article  CAS  Google Scholar 

  34. Regev, L., Poduska, K. M., Addadi, L., Weiner, S. & Boaretto, E. Distinguishing between calcites formed by different mechanisms using infrared spectrometry: Archaeological applications. J. Arch. Sci. 37, 3022–3029 (2010).

    Article  Google Scholar 

  35. Radha, A. V., Forbes, T. Z., Killian, C. E., Gilbert, P. & Navrotsky, A. Transformation and crystallization energetics of synthetic and biogenic amorphous calcium carbonate. Proc. Natl Acad. Sci. USA 107, 16438–16443 (2010).

    Article  CAS  Google Scholar 

  36. Timoshenko, S. & Goodier, J. N. Theory of Elasticity (McGraw-Hill, 1951).

    Google Scholar 

  37. Zolotoyabko, E. & Pokroy, B. Biomineralization of calcium carbonate: Structural aspects. CrystEngComm 9, 1156–1161 (2007).

    Article  CAS  Google Scholar 

  38. Pokroy, B. et al. Anisotropic lattice distortions in biogenic calcite induced by intra-crystalline organic molecules. J. Struct. Biol. 155, 96–103 (2006).

    Article  CAS  Google Scholar 

  39. Li, H. et al. Calcite prisms from mollusk shells (Atrina rigida): Swisscheese-like organic–inorganic single-crystal composites. Adv. Funct. Mater. 21, 2028–2034 (2011).

    Article  Google Scholar 

  40. Li, H. Y., Xin, H. L., Muller, D. A. & Estroff, L. A. Visualizing the 3D internal structure of calcite single crystals grown in agarose hydrogels. Science 326, 1244–1247 (2009).

    Article  CAS  Google Scholar 

  41. Ma, Y., Cohen, S. R., Addadi, L. & Weiner, S. Sea urchin tooth design: An ‘all-calcite’ polycrystalline reinforced fiber composite for grinding rocks. Adv. Mater. 20, 1555–1559 (2008).

    Article  CAS  Google Scholar 

  42. Rar, A., Song, H. & Pharr, G. M. in Thin Films: Stresses and Mechanical Properties Vol. 695 (eds Ozkan, C. S., Freund, L. B., Cammarata, R. C. &Gao, H.) 431–436 (Mater. Res. Soc. Symp., 2002).

    Google Scholar 

  43. Xu, H. & Pharr, G. M. An improved relation for the effective elastic compliance of a film/substrate system during indentation by a flat cylindrical punch. Scr. Mater. 55, 315–318 (2006).

    Article  CAS  Google Scholar 

  44. Hay, J. & Crawford, B. Measuring substrate-independent modulus of thin films. Mater. Res. 26, 727–738 (2011).

    Article  CAS  Google Scholar 

  45. Zugner, S., Marquardt, K. & Zimmermann, L. Influence of nanomechanical crystal properties on the comminution process of particulate solids in spiral jet mills. Eur. J. Pharm. Biopharm. 62, 194–201 (2006).

    Article  Google Scholar 

  46. McColm, I. J. Ceramic Hardness 66–73 (Plenum Press, 1990).

    Book  Google Scholar 

  47. Delak, K., Collino, S. & Evans, J. S. Polyelectrolyte domains and intrinsic disorder within the prismatic asprich protein family. Biochemistry 48, 3669–3677 (2009).

    Article  CAS  Google Scholar 

  48. Li, H. Y. & Estroff, L. A. Calcite growth in hydrogels: Assessing the mechanism of polymer-network incorporation into single crystals. Adv. Mater. 21, 470–473 (2009).

    Article  CAS  Google Scholar 

  49. Nudelman, F. et al. Forming nacreous layer of the shells of the bivalves Atrina rigida and Pinctada margaritifera: An environmental- and cryo-scanning electron microscopy study. J. Struct. Biol. 162, 290–300 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Y-Y.K., K.G. and A.N.K. would like to thank the EPSRC for funding (grant numbers EP/E037364/2 and EP/G000868X/1). B.P., S.B. and S.P. would like to acknowledge the use of the European Synchrotron Radiation Facility and the ID31 staff for synchrotron high-resolution powder diffraction experiments. They also are grateful to E. Zolotoyabko for discussions and thank the Technion Executive Vice President for research grant no 2014208. We would also like to thank M. Ward at the Leeds Electron Microscopy and Spectroscopy Centre for assistance with focused ion beam sample preparation for TEM analysis. S.J.E. would like to thank the EPSRC for funding (grant number EP/E039138/1) and Dr J. Hay (Agilent, USA) for useful discussions relating to the nanoindentation measurements, while R.K. thanks the JEOL York Nanocentre for making its TEM facilities available. S.P.A. thanks the EPSRC for funding (grant number EP/G007950/1).

Author information

Authors and Affiliations

Authors

Contributions

Y-Y.K., K.G. and A.N.K. grew the crystals, and carried out SEM analysis. Y-Y.K. also performed all IR and image analysis, the TGA analysis and assisted R.K. in performing the FIB and TEM work. P.Y. synthesized and characterized the block copolymers under the supervision of S.P.A., while L.R. performed the nanoindentation studies and analysis under the supervision of S.J.E. S.B., S.P. and B.P. carried out the synchrotron XRD experiments, while B.P. analysed the data obtained. F.C.M. led the project, supervised Y-Y.K., K.G. and A.N.K. and wrote the paper with assistance from her co-authors.

Corresponding authors

Correspondence to Stephen J. Eichhorn or Fiona C. Meldrum.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2824 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, YY., Ganesan, K., Yang, P. et al. An artificial biomineral formed by incorporation of copolymer micelles in calcite crystals. Nature Mater 10, 890–896 (2011). https://doi.org/10.1038/nmat3103

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3103

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing