Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural origin of enhanced slow dynamics near a wall in glass-forming systems

Abstract

Spatial confinement is known to induce a drastic change in the viscosity, relaxation times, and flow profile of liquids near the glass (or jamming) transition point. The essential underlying question is how a wall affects the dynamics of densely packed systems. Here we study this fundamental problem, using experiments on a driven granular hard-sphere liquid and numerical simulations of polydisperse and bidisperse colloidal liquids. The nearly hard-core nature of the particle–wall interaction provides an ideal opportunity to study purely geometrical confinement effects. We reveal that the slower dynamics near a wall is induced by wall-induced enhancement of ‘glassy structural order’, which is a manifestation of strong interparticle correlations. By generalizing the structure-dynamics relation for bulk systems, we find a quantitative relation between the structural relaxation time at a certain distance from a wall and the correlation length of glassy structural order there. Our finding suggests that glassy structural ordering may be the origin of the slow glassy dynamics of a supercooled liquid.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of geometrical confinement on the structural relaxation time.
Figure 2: φ -dependence of the wall effects on the local structural relaxation time ταloc.
Figure 3: Structural and dynamic behaviour of 2DPL confined by rough walls and 2DBL confined by smooth walls.
Figure 4: 3DPL confined between two smooth flat walls.
Figure 5: Wall-induced structural ordering.
Figure 6: Layering near a wall and anisotropic particle motion.

Similar content being viewed by others

References

  1. Martin, C. R. Nanomaterials: A Membrane-based synthetic approach. Science 266, 1961–1966 (1994).

    Article  CAS  Google Scholar 

  2. Bhushan, B., Israelachvili, J. N. & Landman, U. Nanotribology: Friction, wear and lubrication at the atomic scale. Nature 374, 607–616 (1995).

    Article  CAS  Google Scholar 

  3. Whitesides, G. M. The origins and the future of microfluidics. Nature 442, 368–373 (2006).

    Article  CAS  Google Scholar 

  4. Goyon, J., Colin, A., Ovarlez, G., Ajdari, A. & Bocquet, L. Spatial cooperativity in soft glassy flows. Nature 454, 84–87 (2008).

    Article  CAS  Google Scholar 

  5. Drake, J. M. & Klafter, J. Dynamics of confined molecular systems. Phys. Today 43, 46–55 (May, 1990).

    Article  CAS  Google Scholar 

  6. Granick, S. Motions and relaxations of confined liquids. Science 253, 1374–1379 (1991).

    Article  CAS  Google Scholar 

  7. Jackson, C. L. & McKenna, G. B. The glass transition of organic liquids confined to small pores. J. Non-Cryst. Solids 131–133, 221–224 (1991).

    Article  Google Scholar 

  8. Alcoutlabi, M. & McKenna, G. B. Effects of confinement on material behaviour at the nanometre size scale. J. Phys. Condens. Matter 17, R461–R524 (2005).

    Article  CAS  Google Scholar 

  9. Forrest, J. A. & Dalnoki-Veress, K. The glass transition in thin polymer films. Adv. Colloid Interface Sci. 94, 167–195 (2001).

    Article  CAS  Google Scholar 

  10. Teboul, V. & Alba Simionesco, C. Properties of a confined molecular glass-forming liquid. J. Phys. Condens. Matter 14, 5699–5709 (2002).

    Article  CAS  Google Scholar 

  11. Fukao, K. & Miyamoto, Y. Glass transitions and dynamics in thin polymer films: Dielectric relaxation of thin films of polystyrene. Phys. Rev. E 61, 1743–1754 (2000).

    Article  CAS  Google Scholar 

  12. Debenedetti, P. G. & Stillinger, F. H. Supercooled liquids and the glass transition. Nature 410, 259–267 (2001).

    Article  CAS  Google Scholar 

  13. Schmidt-Rohr, K. & Spiess, H. W. Nature of nonexponetial loss of correlation above the glass transition investigated by multidimensional NMR. Phys. Rev. Lett. 66, 3020–3023 (1991).

    Article  CAS  Google Scholar 

  14. Hurley, M. M. & Harrowell, P. Non-Gaussian behaviour and the dynamical complexity of particle motion in a dense two-dimensional liquid. J. Chem. Phys. 105, 10521–10526 (1996).

    Article  CAS  Google Scholar 

  15. Sillescu, H. Heterogeneity at the glass transition: A review. J. Non-Cryst. Solids 243, 81–108 (1999).

    Article  CAS  Google Scholar 

  16. Ediger, M. D. Spatially heterogeneous dynamics in supercooled liquids. Annu. Rev. Phys. Chem. 51, 99–128 (2000).

    Article  CAS  Google Scholar 

  17. Richert, R. Heterogeneous dynamics in liquids: Fluctuations in space and time. J. Phys. Condens. Matter 14, R703–R738 (2002).

    Article  CAS  Google Scholar 

  18. Kegel, W. K. & van Blaaderen, A. Direct observation of dynamical heterogeneities in colloidal hard-sphere suspensions. Science 287, 290–293 (2000).

    Article  CAS  Google Scholar 

  19. Yamamoto, R. & Onuki, A. Kinetic heterogeneities in a highly supercooled liquid. J. Phys. Soc. Jpn 66, 2545–2548 (1997).

    Article  CAS  Google Scholar 

  20. Kob, W., Donati, C., Plimpton, S. J., Poole, P. H. & Glotzer, S. C. Dynamical heterogeneities in a supercooled Lennard-Jones liquid. Phys. Rev. Lett. 79, 2827–2830 (1997).

    Article  CAS  Google Scholar 

  21. Russell, E. V. & Israeloff, N. E. Direct observation of molecular cooperativity near the glass transition. Nature 408, 695–698 (2000).

    Article  CAS  Google Scholar 

  22. Mel’nichenko, Y. B., Schüller, J., Richert, R., Ewen, B. & Loong, C-K. Dynamics of hydrogen-bonded liquids confined to mesopores: A dielectric and neutron spectroscopy study. J. Chem. Phys. 103, 2016–2024 (1995).

    Article  Google Scholar 

  23. Fehr, T. & Löwen, H. Glass transition in confined geometry. Phys. Rev. E 52, 4016–4025 (1995).

    Article  CAS  Google Scholar 

  24. Németh, Z. T. & Löwen, H. Freezing and glass transition of hard spheres in cavities. Phys. Rev. E 59, 6824–6829 (1999).

    Article  Google Scholar 

  25. Archer, A. J., Hopkins, P. & Schmidt, M. Dynamics in inhomogeneous liquids and glasses via the test particle limit. Phys. Rev. E 75, 040501(R) (2007).

    Article  Google Scholar 

  26. Mittal, J., Truskett, T. M., Errington, J. R. & Hummer, G. Layering and position-dependent diffusive dynamics of confined fluids. Phys. Rev. Lett. 100, 145901 (2008).

    Article  Google Scholar 

  27. Scheidler, P., Kob, W. & Binder, K. The relaxation dynamics of a simple glass former confined in a pore. Europhys. Lett. 52, 277–283 (2000).

    Article  CAS  Google Scholar 

  28. Scheidler, P., Kob, W. & Binder, K. Cooperative motion and growing length scales in supercooled confined liquids. Europhys. Lett. 59, 701–707 (2002).

    Article  CAS  Google Scholar 

  29. Scheidler, P., Kob, W. & Binder, K. The relaxation dynamics of a supercooled liquid confined by rough walls. J. Phys. Chem. B 108, 6673–6686 (2004).

    Article  CAS  Google Scholar 

  30. Nugent, C. R., Edmond, K. V., Patel, H. N. & Weeks, E. R. Colloidal glass transition observed in confinement. Phys. Rev. Lett. 99, 025702 (2007).

    Article  Google Scholar 

  31. Mittal, J., Errington, J. R. & Truskett, T. M. Does confining the hard-sphere fluid between hard walls change its average properties? J. Chem. Phys. 126, 244708 (2007).

    Article  Google Scholar 

  32. Goel, G., Krekelberg, W. P., Errington, J. R. & Truskett, T. M. Tuning density profiles and mobility of inhomogeneous fluids. Phys. Rev. Lett. 100, 106001 (2008).

    Article  Google Scholar 

  33. Biroli, G., Bouchaud, J. P., Cavagna, A., Grigera, T. S. & Verrochio, P. Thermodynamic signature of growing amorphous order in glass-forming liquids. Nature Phys. 4, 771–775 (2008).

    Article  CAS  Google Scholar 

  34. Kawasaki, T., Araki, T. & Tanaka, H. Correlation between dynamic heterogeneity and medium-range order in two-dimensional glass-forming liquids. Phys. Rev. Lett. 99, 215701 (2007).

    Article  Google Scholar 

  35. Watanabe, K. & Tanaka, H. Direct observation of medium-range crystalline order in granular liquids near the glass transition. Phys. Rev. Lett. 100, 158002 (2008).

    Article  Google Scholar 

  36. Tanaka, H., Kawasaki, T., Shintani, H. & Watanabe, K. Critical-like behaviour of glass-forming liquids. Nature Mater. 9, 324–331 (2010).

    Article  CAS  Google Scholar 

  37. Kawasaki, T. & Tanaka, H. Structural origin of dynamic heterogeneity in three-dimensional colloidal glass formers and its link to crystal nucleation. J. Phys. Condens. Matter 22, 232102 (2010).

    Article  Google Scholar 

  38. Nelson, D. R. Defects and Geometry in Condensed Matter Physics (Cambridge Univ. Press, 2002).

    Google Scholar 

  39. Dullens, R. P. A. & Kegel, W. K. Topological lifetimes of polydisperse colloidal hard spheres at a wall. Phys. Rev. E 71, 011405 (2005).

    Article  Google Scholar 

  40. Kawasaki, T. & Tanaka, H. Formation of crystal nucleus from liquid. Proc. Natl Acad. Sci. USA 107, 14036–14041 (2010).

    Article  CAS  Google Scholar 

  41. Baranyai, A. & Evans, D. J. Direct entropy calculation from computer simulation of liquids. Phys. Rev. A 40, 3817–3822 (1989).

    Article  CAS  Google Scholar 

  42. Mountain, R. D. & Raveché, H. J. Entropy and molecular correlation functions in open systems. II Two- and three-Body correlations. J. Chem. Phys. 55, 2250 (1971).

    Article  CAS  Google Scholar 

  43. Shintani, H. & Tanaka, H. Frustration on the way to crystallization in glass. Nature Phys. 2, 200–206 (2006).

    Article  CAS  Google Scholar 

  44. Cahn, J. W. Critical-point wetting. J. Chem. Phys. 66, 3667–3672 (1977).

    Article  CAS  Google Scholar 

  45. Binder, K. Phase Transition and Critical Phenomena Vol. 8, 1–144 (Academic, 1983).

    Google Scholar 

  46. Goyon, J., Colin, A. & Bocquet, L. How does a soft glassy material flow: Finite size effects, non local rheology, and flow cooperativity. Soft Matter 6, 2668–2678 (2010).

    Article  CAS  Google Scholar 

  47. Samanta, A., Ali, S. M. & Ghosh, S. New universal scaling laws of diffusion and Kolmogorov–Sinai entropy in simple liquids. Phys. Rev. Lett. 92, 145901 (2004).

    Article  Google Scholar 

  48. Steinhardt, P. J., Nelson, D. R. & Ronchetti, M. Bond-orientational order in liquids and glasses. Phys. Rev. B 28, 784–805 (1983).

    Article  CAS  Google Scholar 

  49. ten Wolde, P. R., Ruiz-Montero, M. J. & Frenkel, D. Numerical calculation of the rate of crystal nucleation in a Lennard-Jones system at moderate undercooling. J. Chem. Phys. 104, 9932–9947 (1996).

    Article  CAS  Google Scholar 

  50. Lechner, W. & Dellago, C. Accurate determination of crystal structures based on averaged local bond order parameters. J. Chem. Phys. 129, 114707 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to W. Kob for valuable discussions. This work was partly supported by a grant-in-aid from the Ministry of Education, Culture, Sports, Science and Technology, Japan and also by the Japan Society for the Promotion of Science (JSPS) through its FIRST Program.

Author information

Authors and Affiliations

Authors

Contributions

H.T. conceived the project, K.W. performed granular experiments, T.K. performed numerical simulations, all authors analysed the data, and H.T. wrote the manuscript. K.W. and T.K. contributed equally to this work.

Corresponding author

Correspondence to Hajime Tanaka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, K., Kawasaki, T. & Tanaka, H. Structural origin of enhanced slow dynamics near a wall in glass-forming systems. Nature Mater 10, 512–520 (2011). https://doi.org/10.1038/nmat3034

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3034

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing