Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nodeless superconducting gap in AxFe2Se2 (A=K,Cs) revealed by angle-resolved photoemission spectroscopy

Abstract

Pairing symmetry is a fundamental property that characterizes a superconductor. For the iron-based high-temperature superconductors1,2, an s±-wave pairing symmetry has received increasing experimental3,4,5,6,7,8,9,10,11 and theoretical12,13,14,15,16,17,18,19,20,21 support. More specifically, the superconducting order parameter is an isotropic s-wave type around a particular Fermi surface, but it has opposite signs between the hole Fermi surfaces at the zone centre and the electron Fermi surfaces at the zone corners. Here we report the low-energy electronic structure of the newly discovered superconductors, AxFe2Se2 (A=K,Cs) with a superconducting transition temperature (Tc) of about 30 K. We found AxFe2Se2 (A=K,Cs) is the most heavily electron-doped among all iron-based superconductors. Large electron Fermi surfaces are observed around the zone corners, with an almost isotropic superconducting gap of ~10.3 meV, whereas there is no hole Fermi surface near the zone centre, which demonstrates that interband scattering or Fermi surface nesting is not a necessary ingredient for the unconventional superconductivity in iron-based superconductors. Thus, the sign change in the s± pairing symmetry driven by the interband scattering as suggested in many weak coupling theories12 becomes conceptually irrelevant in describing the superconducting state here. A more conventional s-wave pairing is probably a better description.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Fermi surface of A0.8Fe2Se2 (A=K,Cs).
Figure 2: Photoemission data of K0.8Fe2Se2.
Figure 3: The Fermi surface and band structure as a function of kz for K0.8Fe2Se2.
Figure 4: Temperature dependence of the photoemission data near the zone corner for K0.8Fe2Se2.
Figure 5: Momentum dependence of the superconducting gap of A0.8Fe2Se2 (A=K,Cs).

Similar content being viewed by others

References

  1. Kamihara, Y., Watanabe, T., Hirano, M. & Hosono, H. Iron-based layered superconductor La[O1−xFx]FeAs (x=0.05–0.12) with Tc=26 K. J. Am. Chem. Soc. 130, 3296–3297 (2008).

    Article  CAS  Google Scholar 

  2. Chen, X. H. et al. Superconductivity at 43 K in SmFeAsO1−xFx . Nature 453, 761–762 (2008).

    Article  CAS  Google Scholar 

  3. Ding, H. et al. Observation of Fermi-surface-independent nodeless superconducting gaps in Ba0.6K0.4Fe2As2 . Europhys. Lett. 83, 47001 (2008).

    Article  Google Scholar 

  4. Terashima, K. et al. Fermi surface nesting induced strong pairing in iron-based superconductors. Proc. Natl Acad. Sci. USA 106, 7330–7333 (2009).

    Article  CAS  Google Scholar 

  5. Zhang, Y. et al. Out-of-plane momentum and symmetry dependent superconducting gap in Ba0.6K0.4Fe2As2 . Phys. Rev. Lett. 105, 117003 (2010).

    Article  CAS  Google Scholar 

  6. Christianson, A. D. et al. Unconventional superconductivity in Ba0.6K0.4Fe2As2 from inelastic neutron scattering. Nature 456, 930–962 (2008).

    Article  CAS  Google Scholar 

  7. Qiu, Y. et al. Spin gap and resonance at the nesting wave vector in superconducting FeSe0.4Te0.6 . Phys. Rev. Lett. 103, 067008 (2009).

    Article  Google Scholar 

  8. Hanaguri, T., Niitaka, S., Kuroki, K. & Takagi, H. Unconventional s-wave superconductivity in Fe(Se, Te). Science 328, 474–476 (2010).

    Article  CAS  Google Scholar 

  9. Kondo, T. et al. Momentum dependence of the superconducting gap in NdFeAsO0.9F0.1 single crystals measured by angle resolved photoemission spectroscopy. Phys. Rev. Lett. 101, 147003 (2008).

    Article  Google Scholar 

  10. Wray, L. et al. Momentum dependence of superconducting gap, strong-coupling dispersion kink, and tightly bound Cooper pairs in the high-Tc(Sr,Ba)1−x(K,Na)xFe2As2 superconductors. Phy. Rev. B 78, 184508 (2008).

    Article  Google Scholar 

  11. Borisenko, S. V. et al. Superconductivity without nesting in LiFeAs. Phys. Rev. Lett. 105, 067002 (2010).

    Article  CAS  Google Scholar 

  12. Mazin, I. I. & Schmalian, J. Pairing symmetry and pairing state in ferropnictides: Theoretical overview. Physica C 469, 614–627 (2009).

    Article  CAS  Google Scholar 

  13. Seo, K., Bernevig, B. A. & Hu, J. P. Pairing symmetry in a two-orbital exchange coupling model of oxypnictides. Phys. Rev. Lett. 101, 206404 (2008).

    Article  Google Scholar 

  14. Wang, F. et al. A functional renormalization group study of the pairing symmetry and pairing mechanism of the FeAs based high temperature superconductors. Phys. Rev. Lett. 102, 047005 (2009).

    Article  Google Scholar 

  15. Kuroki, K. et al. Unconventional pairing originating from the disconnected Fermi surfaces of superconducting LaFeAsO1−xFx . Phys. Rev. Lett. 101, 087004 (2008).

    Article  Google Scholar 

  16. Kuroki, K. Anion height as a controlling parameter for the superconductivity in iron pnictides and cuprates. Preprint at http://arxiv.org/abs/1008.2286 (2010).

  17. Thomale, R. et al. Functional renormalization-group study of the doping dependence of pairing symmetry in the iron pnictide superconductors. Phys. Rev. B 80, 180505 (2009).

    Article  Google Scholar 

  18. Thomale, R., Platt, C., Hanke, W. & Bernevig, B. A. Why some iron-based superconductors are nodal while others are nodeless. Preprint at http://arxiv.org/abs/1002.3599 (2010).

  19. Yao, Z-J., Li, J-X. & Wang, Z. D. Spin fluctuations, interband coupling and unconventional pairing in iron-based superconductors. New J. Phys. 11, 025009 (2009).

    Article  Google Scholar 

  20. Lu, X., Fang, C., Tsai, W-F., Jiang, Y. & Hu, J. P. S-wave superconductivity with orbital dependent sign change in the checkerboard models of iron-based superconductors. Preprint at http://arxiv.org/abs/1012.2566 (2010).

  21. Berg, E., Kivelson, S. A. & Scalapino, D. J. A twisted Ladder: Relating the iron superconductors and the high Tc cuprates. Phys. Rev. B 81, 172504 (2010).

    Article  Google Scholar 

  22. Sato, T. et al. Band structure and Fermi surface of an extremely overdoped iron-based superconductor KFe2As2 . Phys. Rev. Lett. 103, 047002 (2009).

    Article  CAS  Google Scholar 

  23. Dong, J. K. et al. Quantum criticality and nodal superconductivity in the FeAs-based superconductor KFe2As2 . Phys. Rev. Lett. 104, 087005 (2010).

    Article  CAS  Google Scholar 

  24. Zhang, Y. et al. The orbital characters of bands in iron-based superconductor BaFe1.85Co0.15As2 . (in the press); preprint at http://arxiv.org/abs/0904.4022.

  25. Shimojima, T. et al. Orbital-dependent modifications of electronic structure across the magnetostructural transition in BaFe2As2 . Phys. Rev. Lett. 104, 057002 (2010).

    Article  CAS  Google Scholar 

  26. Vildosola, V. et al. Bandwidth and Fermi surface of iron oxypnictides: Covalency and sensitivity to structural changes. Phys. Rev. B 78, 064518 (2008).

    Article  Google Scholar 

  27. Guo, J. et al. Superconductivity in the iron selenide KxFe2Se2(0≤x≤1.0). Phys. Rev. B 82, 180520 (2010).

    Article  Google Scholar 

  28. Mizuguchi, Y. et al. Transport properties of the new Fe-based superconductor KxFe2Se2 (Tc=33 K). Appl. Phys. Lett. 98, 042511 (2011).

    Article  Google Scholar 

  29. Krzton-Maziopa, A. et al. Synthesis and crystal growth of Cs0.8(FeSe0.98)2: A new iron-based superconductor with Tc=27 K. J. Phys. Condens. Matter 23, 052203 (2011).

    Article  CAS  Google Scholar 

  30. Ying, J. J. et al. Superconductivity and magnetic properties of high-quality single crystals of AxFe2Se2 (A=K and Cs). Preprint at http://arxiv.org/abs/1012.5552 (2010).

  31. Shein, I. R. & Ivanovskii, A. L. Electronic structure and Fermi surface of new K intercalated iron selenide superconductor KxFe2Se2. Preprint at http://arxiv.org/abs/1012.5164 (2010).

  32. Chen, F. et al. Electronic structure of Fe1.04Te0.66Se0.34 . Phys. Rev. B 81, 014526 (2010).

    Article  Google Scholar 

  33. Nekrasov, I. A. & Sadovskii, M. V. Electronic structure, topological phase transitions and superconductivity in (K,Cs)xFe2Se2 . Pisma ZhETF 93, 182–185 (2011).

    Google Scholar 

  34. Qian, T. et al. Absence of holelike Fermi surface in superconducting K0.8Fe1.7Se2 revealed by ARPES. Preprint at http://arxiv.org/abs/1012.6017 (2010).

Download references

Acknowledgements

This work is supported in part by the National Science Foundation of China, Ministry of Education of China, Science and Technology Committee of Shanghai Municipal, and National Basic Research Program of China (973 Program) under grant Nos. 2011CB921802 and 2011CBA00102.

Author information

Authors and Affiliations

Authors

Contributions

ARPES measurements were done by Y.Z., L.X.Y., M.X., Z.R.Y., F.C., C.H., H.C.X., J.J. and B.P.X. M.M. and S.K. helped with the experiment at UVSOR. J.J.Y., X.F.W. and X.H.C. provided the samples. Y.Z., L.X.Y. and D.L.F. analysed the ARPES data. J.P.H. and D.L.F wrote the paper. D.L.F. was responsible for project direction, planning and infrastructure.

Corresponding author

Correspondence to D. L. Feng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 678 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Yang, L., Xu, M. et al. Nodeless superconducting gap in AxFe2Se2 (A=K,Cs) revealed by angle-resolved photoemission spectroscopy. Nature Mater 10, 273–277 (2011). https://doi.org/10.1038/nmat2981

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2981

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing