Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Observation of the intrinsic pinning of a magnetic domain wall in a ferromagnetic nanowire

Abstract

The spin transfer torque is essential for electrical magnetization switching1,2. When a magnetic domain wall is driven by an electric current through an adiabatic spin torque, the theory predicts a threshold current even for a perfect wire without any extrinsic pinning3. The experimental confirmation of this ‘intrinsic pinning’, however, has long been missing. Here, we give evidence that this intrinsic pinning determines the threshold, and thus that the adiabatic spin torque dominates the domain wall motion in a perpendicularly magnetized Co/Ni nanowire. The intrinsic nature manifests itself both in the field-independent threshold current and in the presence of its minimum on tuning the wire width. The demonstrated domain wall motion purely due to the adiabatic spin torque will serve to achieve robust operation and low energy consumption in spintronic devices5,6,7,8.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intrinsic pinning of magnetic domain wall and device structure.
Figure 2: Domain wall depinning induced by field and current.
Figure 3: Wire width dependence of threshold current density.
Figure 4: External magnetic field dependence of threshold current density.

Similar content being viewed by others

References

  1. Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1 (1996).

    Article  CAS  Google Scholar 

  2. Berger, L. Motion of a magnetic domain wall traversed by fast-rising current pulses. J. Appl. Phys. 71, 2721 (1992).

    Article  CAS  Google Scholar 

  3. Tatara, G. & Kohno, H. Theory of current-driven domain wall motion: Spin transfer versus momentum transfer. Phys. Rev. Lett. 92, 086601 (2004).

    Article  Google Scholar 

  4. Ono, T. et al. Propagation of a magnetic domain wall in a submicrometer magnetic wire. Science 284, 468 (1999).

    Article  CAS  Google Scholar 

  5. Allwood, D. A. et al. Magnetic domain-wall logic. Science 309, 1688 (2005).

    Article  CAS  Google Scholar 

  6. Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190 (2008).

    Article  CAS  Google Scholar 

  7. Fukami, S. et al. Low-current perpendicular domain wall motion cell for scalable high-speed MRAM. 2009 symposium on VLSI technology. Digest Tech. Pap. 230 (2009).

  8. Chiba, D. et al. Control of multiple magnetic domain walls by current in a Co/Ni nano-wire. Appl. Phys. Exp. 3, 073004 (2010).

    Article  Google Scholar 

  9. Tatara, G. et al. Threshold current of domain wall motion under extrinsic pinning, β-term and non-adiabaticity. J. Phys. Soc. Jpn 75, 064708 (2006).

    Article  Google Scholar 

  10. Yamaguchi, A. et al. Real-space observation of current-driven domain wall motion in submicron magnetic wires. Phys. Rev. Lett. 92, 077205 (2004).

    Article  CAS  Google Scholar 

  11. Vernier, N., Allwood, D. A., Atkinson, D., Cooke, M. D. & Cowburn, R. P. Domain wall propagation in magnetic nanowires by spin-polarized current injection. Europhys. Lett. 65, 526 (2004).

    Article  CAS  Google Scholar 

  12. Kläui, M. et al. Controlled and reproducible domain wall displacement by current pulses injected into ferromagnetic ring structures. Phys. Rev. Lett. 94, 106601 (2005).

    Article  Google Scholar 

  13. Saitoh, E., Miyajima, H., Yamaoka, T. & Tatara, G. Current-induced resonance and mass determination of a single magnetic domain wall. Nature 432, 203 (2004).

    Article  CAS  Google Scholar 

  14. Thomas, L. et al. Oscillatory dependence of current-driven magnetic domain wall motion on current pulse length. Nature 443, 197 (2006).

    Article  CAS  Google Scholar 

  15. Togawa, Y. et al. Current-excited magnetization dynamics in narrow ferromagnetic wires. Jpn. J. Appl. Phys. 45, L683 (2006).

    Article  CAS  Google Scholar 

  16. Hayashi, M., Thomas, L., Moriya, R., Rettner, C. & Parkin, S. S. P. Current-controlled magnetic domain-wall nanowire shift register. Science 320, 209 (2008).

    Article  CAS  Google Scholar 

  17. Zhang, S. & Li, Z. Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets. Phys. Rev. Lett. 93, 127204 (2004).

    Article  CAS  Google Scholar 

  18. Thiaville, A., Nakatani, Y., Miltat, J. & Suzuki, Y. Micromagnetic understanding of current-driven domain wall motion in patterned nanowires. Europhys. Lett. 69, 990 (2005).

    Article  CAS  Google Scholar 

  19. Yamanouchi, M., Chiba, D., Matsukura, F. & Ohno, H. Velocity of domain-wall motion induced by electrical current in the ferromagnetic semiconductor (Ga,Mn)As. Phys. Rev. Lett. 96, 096601 (2006).

    Article  CAS  Google Scholar 

  20. Yamanouchi, M., Ieda, J., Matsukura, F., Barnes, S. E., Maekawa, S. & Ohno, H. Universality classes for domain wall motion in the ferromagnetic semiconductor (Ga,Mn)As. Science 317, 1726 (2007).

    Article  CAS  Google Scholar 

  21. Koyama, T. et al. Control of domain wall position by electrical current in structured Co/Ni wire with perpendicular magnetic anisotropy. Appl. Phys. Exp. 1, 101303 (2008).

    Article  Google Scholar 

  22. Tanigawa, H. et al. Domain wall motion induced by electric current in a perpendicularly magnetized Co/Ni nano-wire. Appl. Phys. Exp. 2, 053002 (2009).

    Article  Google Scholar 

  23. Jung, S-W., Kim, W., Lee, T-D., Lee, K-J. & Lee, H-W. Current-induced domain wall motion in a nanowire with perpendicular magnetic anisotropy. Appl. Phys. Lett. 92, 202508 (2008).

    Article  Google Scholar 

  24. Yamanouchi, M., Chiba, D., Matsukura, F. & Ohno, H. Current-induced domain wall switching in a ferromagnetic semiconductor structure. Nature 428, 539 (2004).

    Article  CAS  Google Scholar 

  25. Ravelosona, D., Mangin, S., Katine, J, A., Fullerton, Eric E. & Terris, B. D. Threshold currents to move domain walls in films with perpendicular anisotropy. Appl. Phys. Lett. 90, 072508 (2007).

    Article  Google Scholar 

  26. Hayashi, M. et al. Influence of current on field-driven domain wall motion in permalloy nanowires from time resolved measurements of anisotropic magnetoresistance. Phys. Rev. Lett. 96, 197207 (2006).

    Article  CAS  Google Scholar 

  27. Burrowes, C. et al. Non-adiabatic spin torques in narrow magnetic domain walls. Nature Phys. 6, 17 (2009).

    Article  Google Scholar 

  28. Fukami, S., Suzuki, T., Ohshima, N., Nagahara, K. & Ishiwata, N. Micromagnetic analysis of current driven domain wall motion in nano-strips with perpendicular magnetic anisotropy. J. Appl. Phys. 103, 07E718 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Kasai and H. Kohno for useful discussions. This work was partly supported by the New Energy and Industrial Technology Development Organization (NEDO) Spintronics Nonvolatile Devices project and a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Contributions

S.F., T.S., N.O., and N.I. supplied the Co/Ni multilayer films. T.K. fabricated the device. D.C. set up measurement apparatus. T.K., D.C., K.U., K. Kondou, and H.T. collected and analysed all data. Y.N. performed the simulations. D.C., K. Kobayashi, and T.O. planned and supervised the study. T.K., D.C., K. Kobayashi, and T.O. wrote the manuscript. All authors discussed the results.

Corresponding author

Correspondence to T. Ono.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1425 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koyama, T., Chiba, D., Ueda, K. et al. Observation of the intrinsic pinning of a magnetic domain wall in a ferromagnetic nanowire. Nature Mater 10, 194–197 (2011). https://doi.org/10.1038/nmat2961

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2961

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing