Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Engineering spin propagation across a hybrid organic/inorganic interface using a polar layer

An Erratum to this article was published on 21 February 2011

This article has been updated

Abstract

Spintronics has shown a remarkable and rapid development, for example from the initial discovery of giant magnetoresistance in spin valves1 to their ubiquity in hard-disk read heads in a relatively short time. However, the ability to fully harness electron spin as another degree of freedom in semiconductor devices has been slower to take off. One future avenue that may expand the spintronic technology base is to take advantage of the flexibility intrinsic to organic semiconductors (OSCs), where it is possible to engineer and control their electronic properties and tailor them to obtain new device concepts2. Here we show that we can control the spin polarization of extracted charge carriers from an OSC by the inclusion of a thin interfacial layer of polar material. The electric dipole moment brought about by this layer shifts the OSC highest occupied molecular orbital with respect to the Fermi energy of the ferromagnetic contact. This approach allows us full control of the spin band appropriate for charge-carrier extraction, opening up new spintronic device concepts for future exploitation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A schematic of the device structure.
Figure 2: Spin-polarized charge carriers are present in the OSC, close to the top NiFe interface.
Figure 3: A comparison of the device magnetoresistance and spin polarization close to the top interface.
Figure 4: Schematic of hole transport in the OSC and how a vacuum level shift leads to a change of extracted spin polarization.

Similar content being viewed by others

Change history

  • 18 January 2011

    In the version of this Letter originally published, in the paragraph above the Methods section, 'kiloteslas' should have read 'kBT'. This has been corrected in the HTML and PDF versions.

References

  1. Baibich, M. N. et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988).

    Article  CAS  Google Scholar 

  2. Bergenti, I. et al. Spin polarised electrodes for organic light emitting diodes. Org. Electron. 5, 309–314 (2004).

    Article  CAS  Google Scholar 

  3. Salis, G., Alvarado, S. F., Tschudy, M., Brunschwiler, T. & Allenspach, R. Hysteretic electroluminescence in organic light-emitting diodes for spin injection. Phys. Rev. B 70, 085203 (2004).

    Article  Google Scholar 

  4. Xiong, Z. H., Wu, D., Vardeny, Z. & Shi, J. Giant magnetoresistance in organic spin-valves. Nature 427, 821–824 (2004).

    Article  CAS  Google Scholar 

  5. Dediu, V. A., Hueso, L. E., Bergenti, I. & Taliani, C. Spin routes in organic semiconductors. Nature Mater. 8, 707–716 (2009).

    Article  CAS  Google Scholar 

  6. Lin, R., Wang, F., Rybicki, J., Wohlgenannt, M. & Hutchinson, K. A. Distinguishing between tunnelling and injection regimes of ferromagnet/organic semiconductor/ferromagnet junctions. Phys. Rev. B 81, 195214 (2010).

    Article  Google Scholar 

  7. Jiang, S. B., Pearson, J. E. & Bader, S. D. Absence of spin transport in the organic semiconductor Alq(3). Phys. Rev. B 77, 035303 (2008).

    Article  Google Scholar 

  8. Schoonas, J. J. H. M. et al. Magnetoresistance in hybrid organic spin valves at the onset of multiple-step tunnelling. Phys. Rev. Lett. 103, 146601 (2009).

    Article  Google Scholar 

  9. Sun, D. L. et al. Giant magnetoresistance in organic spin valves. Phys. Rev. Lett. 104, 236602 (2010).

    Article  Google Scholar 

  10. Dediu, V. et al. Room-temperature spintronic effects in Alq3-based hybrid devices. Phys. Rev. B 78, 115203 (2008).

    Article  Google Scholar 

  11. Barraud, C. et al. Unravelling the role of the interface for spin injection into organic semiconductors. Nature Phys. 6, 615–620 (2010).

    Article  CAS  Google Scholar 

  12. Cinchetti, M. et al. Determination of spin injection and transport in a ferromagnet/organic semiconductor heterojunction by two-photon photoemission. Nature Mater. 8, 115–119 (2009).

    Article  CAS  Google Scholar 

  13. Atodiresei, N. et al. Design of the local spin polarization at the organic–ferromagnetic interface. Phys. Rev. Lett. 105, 066601 (2010).

    Article  Google Scholar 

  14. Campbell, I. H. et al. Controlling charge injection in organic electronic devices using self-assembled monolayers. Appl. Phys. Lett. 71, 3528–3530 (1997).

    Article  CAS  Google Scholar 

  15. Bolink, H. J. et al. Molecular ionic junction for enhanced electronic charge transfer. Langmuir 25, 79–83 (2009).

    Article  CAS  Google Scholar 

  16. Drew, A. J. et al. Direct measurement of the electronic spin diffusion length in a fully functional organic spin valve by low-energy muon spin rotation. Nature Mater. 8, 109–114 (2009).

    Article  CAS  Google Scholar 

  17. Morenzoni, E. et al. Generation of very slow polarized positive muons. Phys. Rev. Lett. 72, 2793–2796 (1994).

    Article  CAS  Google Scholar 

  18. Ishi, H. et al. Energy-level alignment at model interfaces of organic electroluminescent devices studied by UV photoemission: Trend in the deviation from the traditional way of estimating the interfacial electronic structures. IEEE J. Sel. Top. Quantum Electron. 2, 24–33 (1998).

    Article  Google Scholar 

  19. Shii, H. & Seki, K. Energy level alignment at organic/metal interfaces studied by UV photoemission: Breakdown of traditional assumption of a common vacuum level at the interface. IEEE Trans. Electron Devices 44, 1295–1301 (1997).

    Article  Google Scholar 

  20. Wang, F. J., Yang, C. G., Vardeny, Z. & Li, X. Spin response in organic spin valves based on La2/3Sr1/3MnO3 electrodes. Phys. Rev. B 75, 245324 (2007).

    Article  Google Scholar 

  21. Wang, F. J. & Vardeny, Z. V. Recent advances in organic spin-valve devices. Synth. Met. 160, 210–215 (2010).

    Article  CAS  Google Scholar 

  22. Majumdar, S., Majumdar, H. S., Laiho, R. & Osterbacka, R. Comparing small molecules and polymer for future organic spin-valves. J. Alloys Compd. 423, 169–171 (2006).

    Article  CAS  Google Scholar 

  23. Zhan, Y., Bergenti, I., Hueso, L. E. & Dediu, V. Alignment of energy levels at the Alq3/La0.7Sr0.3MnO3 interface for organic spintronic devices. Phys. Rev. B 76, 045406 (2007).

    Article  Google Scholar 

  24. Zhan, Y. Q. et al. Energy level alignment and chemical interaction at Alq3/Co interfaces for organic spintronic devices. Phys. Rev. B 78, 045208 (2008).

    Article  Google Scholar 

  25. Zhan, Y. Q. et al. The role of aluminium oxide buffer layer in organic spin-valves performance. Appl. Phys. Lett. 94, 053301 (2009).

    Article  Google Scholar 

  26. Tiba, M. V., de Jonge, W. J. M., Koopmans, B. & Jonkman, H. T. Morphology and electronic properties of the pentacene on cobalt interface. J. Appl. Phys. 100, 093707 (2006).

    Article  Google Scholar 

  27. Popinciuc, M., Jonkman, H. T. & van Wees, B. J. Energy level alignment symmetry at Co/pentacene/Co interfaces. J. Appl. Phys. 100, 093714 (2006).

    Article  Google Scholar 

  28. Grobosch, M., Dorr, K., Gangineni, R. B. & Knupfer, M. Energy level alignment and injection barriers at spin injection contacts between La0.7Sr0.3MnO3 and organic semiconductors. Appl. Phys. Lett. 92, 023302 (2008).

    Article  Google Scholar 

  29. Lide, D. R. (ed.) Handbook of Physics and Chemistry 90th edn (CRC Press, 2009).

  30. Morley, N. A. et al. Room temperature organic spintronics. J. Appl. Phys. 103, 07F306 (2008).

    Article  Google Scholar 

  31. Smith, D. L. & Ruden, P. P. Spin-polarized tunnelling through potential barriers at ferromagnetic metal/semiconductor Schottky contacts. Phys. Rev. B 78, 125202 (2008).

    Article  Google Scholar 

  32. Valenzuela, S. O., Monsma, D. J., Marcus, C. M., Narayanamurti, V. & Tinkham, M. Spin polarized tunneling at finite bias. Phys. Rev. Lett. 94, 196601 (2005).

    Article  CAS  Google Scholar 

  33. Morenzoni, E. et al. Implantation studies of keV positive muons in thin metallic layers. Nucl. Instrum. Methods B 192, 254–266 (2002).

    Article  CAS  Google Scholar 

  34. Prokscha, T. et al. The new μE4 beam at PSI: A hybrid-type large acceptance channel for the generation of a high intensity surface-muon beam. Nucl. Instrum. Methods A 595, 317–331 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.J.D. acknowledges financial support from the Royal Society, Leverhulme Trust and the EPSRC (grant EP/G054568/1), C.B. from the SNF (grant 200020-119784 and 200020-129484) and the NCCR program MaNEP and N.A.M. from the British Council. This experimental work was partly carried out at the Swiss Muon Source SμS.

Author information

Authors and Affiliations

Authors

Contributions

A.J.D. was responsible for project planning and concept. L.S., L.N., M.W., V.K.M., C.B., F.L.P., N.A.M., A.S., G.J.N., T.P., E.M. and A.J.D. were responsible for the experimental measurements. L.S., L.N., W.P.G. and A.J.D. were responsible for the analysis and interpretation of results. P.D., P.S., T.K., W.P.G. and A.J.D. were responsible for the sample growth and characterization.

Corresponding authors

Correspondence to W. P. Gillin or A. J. Drew.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulz, L., Nuccio, L., Willis, M. et al. Engineering spin propagation across a hybrid organic/inorganic interface using a polar layer. Nature Mater 10, 39–44 (2011). https://doi.org/10.1038/nmat2912

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2912

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing