Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A multiferroic material to search for the permanent electric dipole moment of the electron

Abstract

We describe the first-principles design and subsequent synthesis of a new material with the specific functionalities required for a solid-state-based search for the permanent electric dipole moment of the electron. We show computationally that perovskite-structure europium barium titanate should exhibit the required large and pressure-dependent ferroelectric polarization, local magnetic moments and absence of magnetic ordering at liquid-helium temperature. Subsequent synthesis and characterization of Eu0.5Ba0.5TiO3 ceramics confirm the predicted desirable properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration that an electron with an EDM violates time-reversal symmetry.
Figure 2: Schematic of the physics underlying the experiment to search for the electron EDM.
Figure 3: Calculated phonon dispersion of ferromagnetic Eu0.5Ba0.5TiO3 in its high-symmetry reference structure with pseudocubic lattice constant a0=3.95 Å.
Figure 4: Temperature dependence of permittivity and dielectric loss in Eu0.5Ba0.5TiO3 ceramics.
Figure 5: Temperature dependence of ac magnetic susceptibility, χ, at various static magnetic fields and a frequency of 214 Hz.

Similar content being viewed by others

References

  1. Trodden, M. Electroweak baryogenesis. Rev. Mod. Phys. 71, 1463–1500 (1999).

    Article  CAS  Google Scholar 

  2. Khriplovich, I. B. & Lamoreaux, S. K. CP Violation Without Strangeness (Springer, 1997).

    Book  Google Scholar 

  3. Bernreuther, W. & Suzuki, M. The electric dipole moment of the electron. Rev. Mod. Phys. 63, 313–340 (1991).

    Article  CAS  Google Scholar 

  4. Hudson, J. J., Sauer, B. E., Tarbutt, M. R. & Hinds, E. A. Measurement of the electron electric dipole moment using YbF molecules. Phys. Rev. Lett. 89, 023003 (2002).

    Article  CAS  Google Scholar 

  5. Kawall, D., Bay, F., Bickman, S., Jiang, Y. & DeMille, D. Precision Zeeman–Stark spectroscopy of the metastable a(1)[ 3σ+] state of PbO. Phys. Rev. Lett. 92, 133007 (2004).

    Article  CAS  Google Scholar 

  6. Griffith, W. C. et al. Improved limit on the permanent electric dipole moment of 199Hg. Phys. Rev. Lett. 102, 101601 (2009).

    Article  CAS  Google Scholar 

  7. Guest, J. R. et al. Laser trapping of 225Ra and 226Ra with repumping by room-temperature blackbody radiation. Phys. Rev. Lett. 98, 093001 (2007).

    Article  CAS  Google Scholar 

  8. Tardiff, E. R. et al. Polarization and relaxation of 209Rn. Nucl. Instrum. Methods Phys. Res. A 579, 472–475 (2007).

    Article  CAS  Google Scholar 

  9. Stutz, R. P. & Cornell, E. A. Search for the electron EDM using trapped molecular ions. Bull. Am. Phys. Soc. DAMOP04, J1.047 (2004).

  10. Weiss, D. S., Fang, F. & Chen, J. Measuring the electric dipole moment of Cs and Rb in an optical lattice. Bull. Am. Phys. Soc. APR03, J1.008 (2003).

  11. Baker, C. A. et al. Improved experimental limit on the electric dipole moment of the neutron. Phys. Rev. Lett. 97, 131801 (2006).

    Article  CAS  Google Scholar 

  12. Ledbetter, M. P., Savukov, I. M. & Romalis, M. V. Nonlinear amplification of small spin precession using long-range dipolar interactions. Phys. Rev. Lett. 94, 060801 (2005).

    Article  CAS  Google Scholar 

  13. Heidenreich, B. J. et al. Limit on the electron electric dipole moment in gadolinium–iron garnet. Phys. Rev. Lett. 95, 253004 (2005).

    Article  CAS  Google Scholar 

  14. Bouchard, L. S., Sushkov, A. O., Budker, D., Ford, J. J. & Lipton, A. S. Nuclear-spin relaxation of 207Pb in ferroelectric powders. Phys. Rev. A 77, 022102 (2008).

    Article  Google Scholar 

  15. Shapiro, F. L. Electric dipole moments of elementary particles. Sov. Phys. Usp. 11, 345–352 (1968).

    Article  Google Scholar 

  16. Lamoreaux, S. K. Solid-state systems for the electron electric dipole moment and other fundamental measurements. Phys. Rev. A 66, 022109 (2002).

    Article  Google Scholar 

  17. Budker, D., Lamoreaux, S. K., Sushkov, A. O. & Sushkov, O. P. Sensitivity of condensed-matter P- and T-violation experiments. Phys. Rev. A 73, 022107 (2006).

    Article  Google Scholar 

  18. Sushkov, A. O., Eckel, S. & Lamoreaux, S. K. Prospects for a new search for the electron electric-dipole moment in solid gadolinium–iron-garnet ceramics. Phys. Rev. A 79, 022118–8 (2009).

    Article  Google Scholar 

  19. Sushkov, A. O., Eckel, S. & Lamoreaux, S. K. The prospects for an electron electric dipole moment search with ferroelectric (Eu,Ba)TiO3 ceramics. Phys. Rev. A 81, 022104 (2010).

    Article  Google Scholar 

  20. Spaldin, N. A. & Ramesh, R. Electric-field control of magnetism in complex oxide thin films. MRS Bull. 33, 1047–1050 (2008).

    Article  CAS  Google Scholar 

  21. Fiebig, M. Revival of the magnetoelectric effect. J. Phys. D 38, R1–R30 (2005).

    Article  Google Scholar 

  22. Mukhamedjanov, T. N., Dzuba, V. A. & Sushkov, O. P. Enhancement of the electron electric dipole moment in gadolinium garnets. Phys. Rev. A 68, 042103 (2003).

    Article  Google Scholar 

  23. Hill, N. A. Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694–6709 (2000).

    Article  CAS  Google Scholar 

  24. Merz, W. J. The dielectric properties of BaTiO3 at low temperatures. Phys. Rev. 81, 1064–1065 (1951).

    Article  CAS  Google Scholar 

  25. Rondinelli, J. M., Eidelson, A. S. & Spaldin, N. A. Non-d0 Mn-driven ferroelectricity in antiferromagnetic BaMnO3 . Phys. Rev. B 79, 205119 (2009).

    Article  Google Scholar 

  26. Ramesh, R. & Spaldin, N. A. Multiferroics: Progress and prospects in thin films. Nature Mater. 6, 21–29 (2007).

    Article  CAS  Google Scholar 

  27. Wemple, S. Jr & Camlibel, M. D. Dielectric and optical properties of melt-grown BaTiO3 . J. Phys. Chem. Solids 29, 1797–1803 (1968).

    Article  Google Scholar 

  28. Miyake, S. & Ueda, R. On phase transformation of BaTiO3 . J. Phys. Soc. Jpn 2, 93–97 (1947).

    Article  CAS  Google Scholar 

  29. Katsufuji, T. & Takagi, H. Coupling between magnetism and dielectric properties in quantum paraelectric EuTiO3 . Phys. Rev. B 64, 054415 (2001).

    Article  Google Scholar 

  30. Kamba, S. et al. Magnetodielectric effect and optic soft mode behaviour in quantum paraelectric EuTiO3 ceramics. Europhys. Lett. 80, 27002 (2007).

    Article  Google Scholar 

  31. Fennie, C. J. & Rabe, K. M. Magnetic and electric phase control in epitaxial EuTiO3 from first principles. Phys. Rev. Lett. 97, 267602 (2006).

    Article  Google Scholar 

  32. McGuire, T. R., Shafer, M. W., Joenk, R. J., Alperin, H. A. & Pickart, S. J. Magnetic structure of EuTiO3 . J. Appl. Phys. 37, 981–982 (1966).

    Article  CAS  Google Scholar 

  33. Chien, C-L., DeBenedetti, S. & Barros, F. D. S. Magnetic properties of EuTiO3, Eu2TiO4, and Eu3Ti2O7 . Phys. Rev. B 10, 3913–3922 (1974).

    Article  CAS  Google Scholar 

  34. Shvartsman, V. V., Borisov, P., Kleemann, W., Kamba, S. & Katsufuji, T. Large off-diagonal magnetoelectric coupling in the quantum paraelectric antiferromagnet EuTiO3 . Phys. Rev. B 81, 064426 (2010).

    Article  Google Scholar 

  35. Goian, V. et al. Polar phonon mixing in magnetoelectric EuTiO3 . Eur. Phys. J. B 71, 429–433 (2009).

    Article  CAS  Google Scholar 

  36. Janes, D. L., Bodnar, R. E. & Taylor, A. L. Europium barium titanate—a magnetic ferroelectric compound. J. Appl. Phys. 49, 1452–1454 (1978).

    Article  CAS  Google Scholar 

  37. Hlinka, J. et al. Coexistence of the phonon and relaxation soft mode in the terahertz dielectric response of tetragonal BaTiO3 . Phys. Rev. Lett. 101, 167402 (2008).

    Article  CAS  Google Scholar 

  38. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  39. Anisimov, V. I., Aryasetiawan, F. & Liechtenstein, A. I. First-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA+U method. J. Phys. Condens. Matter 9, 767–808 (1997).

    Article  CAS  Google Scholar 

  40. Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).

    Article  CAS  Google Scholar 

  41. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  42. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  43. King-Smith, R. D. & Vanderbilt, D. Theory of polarization of crystalline solids. Phys. Rev. B 47, 1651–1654 (1993).

    Article  CAS  Google Scholar 

  44. Kunc, K. & Martin, R. M. Ab initio force constants of GaAs: A new approach to calculation of phonons and dielectric properties. Phys. Rev. Lett. 48, 406–409 (1982).

    Article  CAS  Google Scholar 

  45. Alfe, D. PHON: A program to calculate phonons using the small displacement method. Comp. Phys. Comm. 180, 2622–2633 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Science Foundation under award number DMR-0940420 (NAS), by Yale University, by the Czech Science Foundation (project Nos. 202/09/0682 and AVOZ10100520) and by the Young Investigators Group Programme of the Helmholtz Association, Germany, contract VH-NG-409. We thank O. Pacherova, R. Krupkova and G. Urbanova for technical assistance and O. Sushkov for discussions.

Author information

Authors and Affiliations

Authors

Contributions

S.K.L. supervised the EDM measurement effort at Yale. A.O.S. and S.E. carried out the analysis and made preliminary measurements, showing that these materials could be useful in an EDM experiment. M.L. and N.A.S. selected (Eu,Ba)TiO3 as the candidate material according to the experimental requirements and supervised the ab initio calculations. K.Z.R. carried out the ab initio calculations. M.L., N.A.S. and K.Z.R. analysed the ab initio results and wrote the theoretical component of the paper. Ceramics were prepared by P.V. Crystal structure was determined by K.K. and F.L. Dielectric measurements were carried out by M.S. J.P. investigated magnetic properties of ceramics. V.G. carried out infrared reflectivity studies. D.N. investigated terahertz spectra. S.K. coordinated all experimental studies and wrote the synthesis and characterization part of the manuscript. N.A.S. coordinated the preparation of the manuscript.

Corresponding author

Correspondence to N. A. Spaldin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rushchanskii, K., Kamba, S., Goian, V. et al. A multiferroic material to search for the permanent electric dipole moment of the electron. Nature Mater 9, 649–654 (2010). https://doi.org/10.1038/nmat2799

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2799

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing