Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multimeric small interfering ribonucleic acid for highly efficient sequence-specific gene silencing

Abstract

Small interfering RNA (siRNA) with 19–21 base pairs has been recently recognized as a new therapeutic agent for effectively silencing a specific gene on a post-transcription level. For siRNA therapeutics, safe and efficient delivery issues are significant hurdles to clinical applications. Here we present a new class of biologically active siRNA structure based on chemically self-crosslinked and multimerized siRNA through cleavable disulphide linkages. The multimerized siRNA can produce more stable and compact polyelectrolyte complexes with less cytotoxic cationic carriers than naked siRNA because of substantially increased charge densities and the presence of flexible chemical linkers in the backbone. The cleavable and multimerized siRNA shows greatly enhanced gene-silencing efficiencies in vitro and in vivo through a target-messenger-RNA-specific RNA interference processing without significantly eliciting immune induction. This study demonstrates that the multimerized siRNA structure complexed with selected cationic condensing agents can serve as potential gene-silencing therapeutics for treating various diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Biochemical and physical characterizations of multi-siRNA complexes.
Figure 3: Gene-silencing effect by multi-siRNA complexes in vitro and in vivo.
Figure 4: Sequence-specific gene-silencing effect of cleavable VEGF multi-siRNA/LPEI complexes and their nonspecific immune responses in vitro and in vivo.

Similar content being viewed by others

References

  1. Jeong, J. H., Kim, S. W. & Park, T. G. Molecular design of functional polymers for gene therapy. Prog. Polym. Sci. 32, 1239–1274 (2007).

    Article  CAS  Google Scholar 

  2. Jeong, J. H., Mok, H., Oh, Y. & Park, T. G. siRNA conjugate delivery systems. Bioconjug. Chem. 20, 5–14 (2009).

    Article  CAS  Google Scholar 

  3. Elbashir, S. M., Lendeckel, W. & Tuschl, T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 15, 188–200 (2001).

    Article  CAS  Google Scholar 

  4. Kim, D. H. et al. Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nature Biotech. 23, 222–226 (2005).

    Article  CAS  Google Scholar 

  5. Bolcato-Bellemin, A. L., Bonnet, M. E., Creusat, G., Erbacher, P. & Behr, J. P. Sticky overhangs enhance siRNA-mediated gene silencing. Proc. Natl Acad. Sci. USA 104, 16050–16055 (2007).

    Article  CAS  Google Scholar 

  6. Mok, H. & Park, T. G. Self-crosslinked and reducible fusogenic peptides for intracellular delivery of siRNA. Biopolymers 89, 881–888 (2008).

    Article  CAS  Google Scholar 

  7. Wang, W. & Ballatori, N. Endogenous glutathione conjugates: Occurrence and biological functions. Pharmacol. Rev. 50, 335–356 (1998).

    CAS  Google Scholar 

  8. Mok, H., Park, J. W. & Park, T. G. Antisense oligodeoxynucleotide-conjugated hyaluronic acid/protamine nanocomplexes for intracellular gene inhibition. Bioconjug. Chem. 18, 1483–1489 (2007).

    Article  CAS  Google Scholar 

  9. Gary, D. J., Puri, N. & Won, Y. Y. Polymer-based siRNA delivery: Perspectives on the fundamental and phenomenological distinctions from polymer-based DNA delivery. J. Control. Release 121, 64–73 (2007).

    Article  CAS  Google Scholar 

  10. Shah, S. A. & Brunger, A. T. The 1.8 A crystal structure of a statically disordered 17 base-pair RNA duplex: Principles of RNA crystal packing and its effect on nucleic acid structure. J. Mol. Biol. 285, 1577–1588 (1999).

    Article  CAS  Google Scholar 

  11. Kebbekus, P., Draper, D. E. & Hagerman, P. Persistence length of RNA. Biochemistry 34, 4354–4357 (1995).

    Article  CAS  Google Scholar 

  12. Neu, M., Sitterberg, J., Bakowsky, U. & Kissel, T. Stabilized nanocarriers for plasmids based on cross-linked poly(ethylene imine). Biomacromolecules 7, 3428–3438 (2006).

    Article  CAS  Google Scholar 

  13. Lee, J. H. et al. All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery. Angew. Chem. Int. Ed. 48, 4174–4179 (2009).

    Article  CAS  Google Scholar 

  14. Wack, S. et al. Feasibility, sensitivity, and reliability of laser-induced fluorescence imaging of green fluorescent protein-expressing tumours in vivo. Mol. Ther. 7, 765–773 (2003).

    Article  CAS  Google Scholar 

  15. Banerjee, P., Weissleder, R. & Bogdanov, A. Jr Linear polyethyleneimine grafted to a hyperbranched poly(ethylene glycol)-like core: A copolymer for gene delivery. Bioconjug. Chem. 17, 125–131 (2006).

    Article  CAS  Google Scholar 

  16. Mehrotra, S., Lee, I. & Chan, C. Multilayer mediated forward and patterned siRNA transfection using linear-PEI at extended N/P ratios. Acta Biomater. 5, 1474–1488 (2009).

    Article  CAS  Google Scholar 

  17. Rose, S. D. et al. Functional polarity is introduced by Dicer processing of short substrate RNAs. Nucleic Acids Res. 33, 4140–4156 (2005).

    Article  CAS  Google Scholar 

  18. Zhang, H., Kolb, F. A., Brondani, V., Billy, E. & Filipowicz, W. Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J. 21, 5875–5885 (2002).

    Article  CAS  Google Scholar 

  19. Castanotto, D. & Rossi, J. J. The promises and pitfalls of RNA-interference-based therapeutics. Nature 457, 426–433 (2009).

    Article  CAS  Google Scholar 

  20. Wassenegger, M. The role of the RNAi machinery in heterochromatin formation. Cell 122, 13–16 (2005).

    Article  CAS  Google Scholar 

  21. Matzke, M. A. & Birchler, J. A. RNAi-mediated pathways in the nucleus. Nature Rev. Genet. 6, 24–35 (2005).

    Article  CAS  Google Scholar 

  22. Robbins, M. et al. Misinterpreting the therapeutic effects of siRNA caused by immune stimulation. Hum. Gene Ther. 19, 991–999 (2008).

    Article  CAS  Google Scholar 

  23. Zamanian-Daryoush, M. et al. Determinants of cytokine induction by small interfering RNA in human peripheral blood mononuclear cells. J. Interferon Cytokine Res. 28, 221–233 (2008).

    Article  CAS  Google Scholar 

  24. Judge, A. & MacLachlan, I. Overcoming the innate immune response to small interfering RNA. Hum. Gene Ther. 19, 111–124 (2008).

    Article  CAS  Google Scholar 

  25. Sioud, M. RNA interference and innate immunity. Adv. Drug Deliv. Rev. 59, 153–163 (2007).

    Article  CAS  Google Scholar 

  26. Aliyari, R. & Ding, S. W. RNA-based viral immunity initiated by the Dicer family of host immune receptors. Immunol. Rev. 227, 176–188 (2009).

    Article  CAS  Google Scholar 

  27. Castanotto, D. et al. Combinatorial delivery of small interfering RNAs reduces RNAi efficacy by selective incorporation into RISC. Nucleic Acids Res. 35, 5154–5164 (2007).

    Article  CAS  Google Scholar 

  28. Wightman, L. et al. Different behaviour of branched and linear polyethylenimine for gene delivery in vitro and in vivo. J. Gene Med. 3, 362–372 (2001).

    Article  CAS  Google Scholar 

  29. Judge, A. D. et al. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nature Biotech. 23, 457–462 (2005).

    Article  CAS  Google Scholar 

  30. Kim, S. H., Jeong, J. H., Lee, S. H., Kim, S. W. & Park, T. G. Local and systemic delivery of VEGF siRNA using polyelectrolyte complex micelles for effective treatment of cancer. J. Control. Release 129, 107–116 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Lee for the measurement of a deflection force using AFM. This study was supported by an Intelligent Drug Delivery System grant and the World Class University programme from the Ministry of Education, Science and Technology, Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

H.M. and T.G.P. conceived and designed the experiments. H.M. and S.H.L. prepared and characterized multi-siRNA and carried out in vitro cell experiments. H.M., S.H.L. and J.W.P. carried out in vivo animal studies. H.M. and T.G.P. prepared the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Tae Gwan Park.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 730 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mok, H., Lee, S., Park, J. et al. Multimeric small interfering ribonucleic acid for highly efficient sequence-specific gene silencing. Nature Mater 9, 272–278 (2010). https://doi.org/10.1038/nmat2626

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2626

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing