Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-performance polymer semiconducting heterostructure devices by nitrene-mediated photocrosslinking of alkyl side chains

Abstract

Heterostructures are central to the efficient manipulation of charge carriers, excitons and photons for high-performance semiconductor devices. Although these can be formed by stepwise evaporation of molecular semiconductors, they are a considerable challenge for polymers owing to re-dissolution of the underlying layers. Here we demonstrate a simple and versatile photocrosslinking methodology based on sterically hindered bis(fluorophenyl azide)s. The photocrosslinking efficiency is high and dominated by alkyl side-chain insertion reactions, which do not degrade semiconductor properties. We demonstrate two new back-infiltrated and contiguous interpenetrating donor–acceptor heterostructures for photovoltaic applications that inherently overcome internal recombination losses by ensuring path continuity to give high carrier-collection efficiency. This provides the appropriate morphology for high-efficiency polymer-based photovoltaics. We also demonstrate photopatternable polymer-based field-effect transistors and light-emitting diodes, and highly efficient separate-confinement-heterostructure light-emitting diodes. These results open the way to the general development of high-performance polymer semiconductor heterostructures that have not previously been thought possible.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of the FPA methodology in polymer OSCs.
Figure 2: Directed heterostructures with lateral texture.
Figure 3: Polymer PVs.
Figure 4: High-performance photocrosslinked polymer FETs and LEDs.
Figure 5: High-efficiency separate-confinement-heterostructure LEDs. Device structure: glass/ITO/65-nm PEDT:PSSH–x-nmTFB/70-nm F8BT/3-nm Ca/Al.

Similar content being viewed by others

References

  1. Baldo, M. A. et al. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395, 151–154 (1998).

    Article  CAS  Google Scholar 

  2. Walzer, K., Maennig, B., Pfeiffer, M. & Leo, K. Highly efficient organic devices based on electrically doped transport layers. Chem. Rev. 107, 1233–1271 (2007).

    Article  CAS  Google Scholar 

  3. Groenendaal, L. B., Jonas, F., Freitag, D., Pielartzik, H. & Reynolds, J. R. Poly(3,4-ethylenedioxythiophene) and its derivatives: Past, present, and future. Adv. Mater. 12, 481–494 (2000).

    Article  CAS  Google Scholar 

  4. Greenham, N. C., Moratti, S. C., Bradley, D. D. C., Friend, R. H. & Holmes, A. B. Efficient light-emitting diodes based on polymers with high electron-affinities. Nature 365, 628–630 (1993).

    Article  CAS  Google Scholar 

  5. Halls, J. J. M. et al. Efficient photodiodes from interpenetrating polymer networks. Nature 376, 498–500 (1995).

    Article  CAS  Google Scholar 

  6. Ho, P. K. H. et al. Molecular-scale interface engineering for polymer light-emitting diodes. Nature 404, 481–484 (2000).

    Article  CAS  Google Scholar 

  7. Müller, C. D. et al. Multi-colour organic light-emitting displays by solution processing. Nature 421, 829–833 (2003).

    Article  Google Scholar 

  8. Solomeshch, O. et al. Wide band gap cross-linkable semiconductor polymer LED. Synth. Met. 157, 841–845 (2007).

    Article  CAS  Google Scholar 

  9. Charas, A. et al. Photoacid cross-linkable polyfluorenes for optoelectronics applications. Synth. Met. 158, 643–653 (2008).

    Article  CAS  Google Scholar 

  10. Cheng, Y. J. et al. Thermally cross-linkable hole-transporting materials on conducting polymer: Synthesis, characterization and applications for polymer light-emitting devices. Chem. Mater. 20, 413–422 (2008).

    Article  CAS  Google Scholar 

  11. Klärner, G. et al. Cross-linkable polymers based on dialkylfluorenes. Chem. Mater. 11, 1800–1805 (1999).

    Google Scholar 

  12. Keana, J. F. W. & Cai, S. X. New reagents for photoaffinity labeling: Synthesis and photolysis of functionalized perfluorophenyl azides. J. Org. Chem. 55, 3640–3647 (1990).

    Article  CAS  Google Scholar 

  13. Cai, S. X., Keana, J. F. W., Nabity, J. C. & Wybourne, M. N. Conducting polymers as deep-UV and electron beam resists: Direct production of micrometre scale conducting structures from poly(3-octylthiophene). J. Mol. Electron. 7, 63–68 (1991).

    CAS  Google Scholar 

  14. Cai, S. X., Glenn, D. J., Kanskar, M., Wybourne, M. N. & Keana, J. F. W. Development of highly efficient deep-UV and electron beam mediated cross-linkers: Synthesis and photolysis of bis(perfluorophenyl) azides. Chem. Mater. 6, 1822–1829 (1994).

    CAS  Google Scholar 

  15. Liu, L., Engelhard, M. H. & Yan, M. Surface and interface control on photochemically initiated immobilisation. J. Am. Chem. Soc. 128, 14067–14072 (2006).

    Article  CAS  Google Scholar 

  16. Schnapp, K. A., Poe, R., Leyva, E., Soundararajan, N. & Platz, M. S. Exploratory photochemistry of fluorinated aryl azides: Implications for the design of photoaffinity labeling reagents. Bioconjugate Chem. 4, 172–177 (1993).

    Article  CAS  Google Scholar 

  17. Khong, S. H. et al. General photo-patterning and post-deposition modification of polyelectrolyte thin films via efficient ionic bis(fluorinated phenyl azide) photo-crosslinkers. Adv. Funct. Mater. 17, 2490–2499 (2007).

    Article  CAS  Google Scholar 

  18. Png, R. Q. et al. Electromigration of the conducting polymer in organic semiconductor devices and its stabilization by crosslinking. Appl. Phys. Lett. 91, 013511 (2007).

    Article  Google Scholar 

  19. Poe, R., Schnapp, K. A., Young, M. J. T., Grayzar, J. & Platz, M. S. Chemistry and kinetics of singlet (pentafluorophenyl)nitrene. J. Am. Chem. Soc. 114, 5054–5067 (1992).

    Article  CAS  Google Scholar 

  20. Marcinek, A. et al. Unusually long lifetimes of the singlet nitrenes derived from 4-azido-2,3,5,6-tetrafluorobenzamides. J. Phys. Chem. 98, 412–419 (1994).

    Article  CAS  Google Scholar 

  21. Bräse, S., Gil, C., Knepper, K. & Zimmermann, V. Organic azides: an exploding diversity of a unique class of compounds. Angew. Chem. Int. Ed. 44, 5188–5240 (2005).

    Article  Google Scholar 

  22. Collings, J. C. et al. Arene-perfluoroarene interactions in crystal engineering. Part 3: Single-crystal structures of 1:1 complexes of octafluoronaphthalene with fused-ring polyaromatic hydrocarbons. New J. Chem. 25, 1410–1417 (2001).

    Article  CAS  Google Scholar 

  23. Stepto, R. F. T. (ed.) in Polymer Networks: Principles of Their Formation, Structure and Properties (Blackie Academic & Professional, 1998).

  24. Morteani, A. C. et al. Barrier-free electron–hole capture in polymer blend heterojunction light-emitting diodes. Adv. Mater. 15, 1708–1712 (2003).

    Article  CAS  Google Scholar 

  25. Huang, Y. S. et al. Electronic structures of interfacial states formed at polymeric semiconductor heterojunctions. Nature Mater. 7, 483–489 (2008).

    Article  CAS  Google Scholar 

  26. Colthup, N. B., Daly, L. H. & Wiberley, S. E. Introduction to Infrared and Raman Spectroscopy (Academic, 1990).

    Google Scholar 

  27. Pope, M. & Swenberg, C. E. Electronic Processes in Organic Crystals and Polymers (Oxford Univ. Press, 1999).

    Google Scholar 

  28. Tanase, C., Meijer, E. J., Blom, P. W. M. & De Leeuw, D. M. Unification of the hole transport in polymeric field-effect transistors and light-emitting diodes. Phys. Rev. Lett. 91, 216601-1-4 (2003).

    Article  Google Scholar 

  29. Craciun, N. I., Brondijk, J. J. & Blom, P. W. M. Diffusion-enhanced hole transport in thin polymer light-emitting diodes. Phys. Rev. B 77,035206-1-5 (2008).

    Article  Google Scholar 

  30. Kim, J. S., Ho, P. K. H., Greenham, N. C. & Friend, R. H. Electroluminescence emission pattern of organic light-emitting diodes: Implications for device efficiency calculations. J. Appl. Phys. 88, 1073–1081 (2000).

    Article  CAS  Google Scholar 

  31. Blom, P. W. M., Mihailetchi, V. D., Koster, L. J. A. & Markov, D. E. Device physics of polymer: Fullerene bulk heterojunction solar cells. Adv. Mater. 19, 1551–1566 (2007).

    Article  CAS  Google Scholar 

  32. Dennler, G., Scharber, M. C. & Brabec, C. J. Polymer: Fullerene bulk-heterojunction solar cells. Adv. Mater. 2009, 1323–1338 (2009).

    Article  Google Scholar 

  33. Arias, A. C. et al. Photovoltaic performance and morphology of polyfluorene blends: A combined microscopic and photovoltaic investigation. Macromolecules 34, 6005–6013 (2001).

    Article  CAS  Google Scholar 

  34. Blom, P. W. M., Mihailetchi, V. D., Koster, L. J. A. & Markov, D. E. Device physics of polymer: Fullerene bulk heterojuction solar cells. Adv. Mater. 19, 1551–1566 (2007).

    Article  CAS  Google Scholar 

  35. McCulloch, I. et al. Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nature Mater. 5, 328–333 (2006).

    Article  CAS  Google Scholar 

  36. Spreitzer, H. et al. Soluble phenyl-substituted PPVs—new materials for highly efficient polymer LEDs. Adv. Mater. 10, 1340–1343 (1998).

    Article  CAS  Google Scholar 

  37. Becker, H. et al. Soluble PPVs with enhanced performance—a mechanistic approach. Adv. Mater. 12, 42–48 (2000).

    Article  CAS  Google Scholar 

  38. Morteani, A. C., Ho, P. K. H., Friend, R. H. & Silva, C. Electric field-induced transition from heterojunction to bulk charge recombination in bilayer polymer light-emitting diodes. Appl. Phys. Lett. 86, 163501 (2005).

    Article  Google Scholar 

  39. Kim, J. S., Friend, R. H., Grizzi, I. & Burroughes, J. H. Spin-cast thin semiconducting polymer interlayer for improving device efficiency of polymer light-emitting diodes. Appl. Phys. Lett. 87, 023506-1-3 (2005).

    Google Scholar 

  40. Ho, P. K. H., Granström, M., Friend, R. H. & Greenham, N. C. Ultrathin self-assembled layers at the ITO interface to control charge injection and electroluminescence efficiency in polymer light-emitting diodes. Adv. Mater. 10, 769–774 (1998).

    Article  CAS  Google Scholar 

  41. Zhou, M. et al. The role of delta-doped interfaces for Ohmic contacts to organic semiconductors. Phys. Rev. Lett. 103, 036601-1-4 (2009).

    Google Scholar 

Download references

Acknowledgements

We thank N. Conway, I. Grizzi, J. Halls, R. Wilson and the CDT team, L.-Y. Wong, J.-M. Zhuo, L.-H. Zhao, B. Anto and the ONDL team for discussions and technical help. We thank C.-W. Tan and his workshop team for building the measurement rigs. The work in Singapore was supported by MOE ARF (Project 144-000-214-112) and A* STAR SERC (Project 052-117-0030).

Author information

Authors and Affiliations

Authors

Contributions

R.Q.P. and P.J.C. planned and carried out most of the experimental work and data analyses, J.C.T. synthesized the materials, B.L., S.S., M.Z. and S.H.K. assisted with the experiments and data analyses, H.S.O.C. provided insights and J.H.B., L.L.C., R.H.F. and P.K.H.H. guided the work.

Corresponding authors

Correspondence to Lay-Lay Chua, Richard H. Friend or Peter K. H. Ho.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 279 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Png, RQ., Chia, PJ., Tang, JC. et al. High-performance polymer semiconducting heterostructure devices by nitrene-mediated photocrosslinking of alkyl side chains. Nature Mater 9, 152–158 (2010). https://doi.org/10.1038/nmat2594

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2594

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing