Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Exceptional high-temperature stability through distillation-like self-stabilization in bimetallic nanoparticles

Abstract

Metal nanoparticles with precisely controlled size and composition are highly attractive for heterogeneous catalysis. However, their poor thermal stability remains a major hurdle on the way towards application at realistic technical conditions. Recent progress in this area has focused on nanostructured oxides to stabilize embedded metal nanoparticles. Here, we report an alternative approach that relies on synthesizing bimetallic nanoparticles with precise compositional control to obtain improved high-temperature stability. We find that PtRh nanoparticles with sufficiently high Rh content survive extended calcination at temperatures up to 850 C without significant sintering. For lower Rh content, sacrificial self-stabilization of individual nanoparticles through a distillation-like process is observed: the low-melting-point metal (Pt) bleeds out and the increasing concentration of the high-melting-point metal (Rh) leads to re-stabilization of the remaining nanoparticle. This principle of thermal self-stabilization should be broadly applicable to the development of multi-metallic nanomaterials for a broad range of high-temperature applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TEM and XRD characterizations of PtRh (1:1)–BHA calcined at different temperatures.
Figure 2: TEM images of PtRh–BHAs calcined at 700 C with different Pt/Rh ratios.
Figure 3: TEM and EDAX characterization of PtRh–BHA (3:1).
Figure 4: Compositional statistics for PtRh nanoparticles (Pt/Rh=3:1).
Figure 5: CO TPD and XRD characterization of PtRh–BHA (Pt/Rh=3:1) in comparison with monometallic Pt–BHA and Rh–BHA.
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Van Hove, M. A. From surface science to nanotechnology. Catal. Today 113, 133–140 (2006).

    Article  CAS  Google Scholar 

  2. Schlogl, R. & Abd Hamid, S. B. Nanocatalysis: Mature science revisited or something really new? Angew. Chem. Int. Ed. 43, 1628–1637 (2004).

    Article  Google Scholar 

  3. Bell, A. T. The impact of nanoscience on heterogeneous catalysis. Science 299, 1688–1691 (2003).

    Article  CAS  Google Scholar 

  4. Campbell, C. T., Parker, S. C. & Starr, D. E. The effect of size-dependent nanoparticle energetics on catalyst sintering. Science 298, 811–814 (2002).

    Article  CAS  Google Scholar 

  5. Narayanan, R. & El-Sayed, M. A. Catalysis with transition metal nanoparticles in colloidal solution: Nanoparticle shape dependence and stability. J. Phys. Chem. B 109, 12663–12676 (2005).

    Article  CAS  Google Scholar 

  6. Landman, U., Yoon, B., Zhang, C., Heiz, U. & Arenz, M. Factors in gold nanocatalysis: Oxidation of CO in the non-scalable size regime. Top. Catal. 44, 145–158 (2007).

    Article  CAS  Google Scholar 

  7. Ahmadi, T. S., Wang, Z. L., Green, T. C., Henglein, A. & El-Sayed, M. A. Shape-controlled synthesis of colloidal platinum nanoparticles. Science 272, 1924–1925 (1996).

    Article  CAS  Google Scholar 

  8. Rolison, D. R. Catalytic nanoarchitectures—the importance of nothing and the unimportance of periodicity. Science 299, 1698–1701 (2003).

    Article  CAS  Google Scholar 

  9. Häkkinen, H., Abbet, S., Sanchez, A., Heiz, U. & Landman, U. Structural, electronic, and impurity-doping effects in nanoscale chemistry: Supported gold nanoclusters. Angew. Chem. Int. Ed. 42, 1297–1300 (2003).

    Article  Google Scholar 

  10. Heiz, U. & Landman, U. Nanocatalysis. Nanocatalysis (Springer, p. preface V 2007).

  11. Toshima, N. & Yonezawa, T. Bimetallic nanoparticles—novel materials for chemical and physical applications. New J. Chem. 22, 1179–1201 (1998).

    Article  CAS  Google Scholar 

  12. Somorjai, G. A. & Borodko, Y. G. Research in nanosciences—Great opportunity for catalysis science. Catal. Lett. 76, 1–5 (2001).

    Article  CAS  Google Scholar 

  13. Joo, S. H. et al. Thermally stable Pt/mesoporous silica core–shell nanocatalysts for high-temperature reactions. Nature Mater. 8, 126–131 (2009).

    Article  CAS  Google Scholar 

  14. Ott, L. S. & Finke, R. G. Transition-metal nanocluster stabilization for catalysis: A critical review of ranking methods and putative stabilizers. Coord. Chem. Rev. 251, 1075–1100 (2007).

    Article  CAS  Google Scholar 

  15. Narayanan, R. & El-Sayed, M. A. Effect of catalysis on the stability of metallic nanoparticles: Suzuki reaction catalyzed by PVP-palladium nanoparticles. J. Am. Chem. Soc. 125, 8340–8347 (2003).

    Article  CAS  Google Scholar 

  16. Zarur, A. J. & Ying, J. Y. Reverse microemulsion synthesis of nanostructured complex oxides for catalytic combustion. Nature 403, 65–67 (2000).

    Article  CAS  Google Scholar 

  17. Gandhi, H. S., Graham, G. W. & McCabe, R. W. Automotive exhaust catalysis. J. Catal. 216, 433–442 (2003).

    Article  CAS  Google Scholar 

  18. Armor, J. N. The multiple roles for catalysis in the production of H2 . Appl. Catal. A 176, 159–176 (1999).

    CAS  Google Scholar 

  19. Ponec, V. & Bond, G. C. in Catalysis by Metals and Alloys (eds Delmon, B. & Yates, J. T.) (Elsevier Science, 1998).

    Google Scholar 

  20. Poltorak, O. M. & Boronin, V. S. Mitohedry—A new method of studying active centres in crystalline catalysts. Russ. J. Phys. Chem. 40, 1436–1445 (1966).

    Google Scholar 

  21. Kirchhoff, M., Specht, U. & Veser, G. Engineering high-temperature stable nanocomposite materials. Nanotechnology 16, S401–S408 (2005).

    Article  CAS  Google Scholar 

  22. Bonnemann, H. et al. Nanoscale colloidal metals and alloys stabilized by solvents and surfactants—preparation and use as catalyst precursors. J. Org. Chem. 520, 143–162 (1996).

    Article  Google Scholar 

  23. Ponec, V. Alloy catalysts: The concepts. Appl. Catal. A 222, 31–45 (2001).

    Article  CAS  Google Scholar 

  24. Sanders, T., Papas, P. & Veser, G. Supported nanocomposite catalysts for high-temperature partial oxidation of methane. Chem. Eng. J. 142, 122–132 (2008).

    Article  CAS  Google Scholar 

  25. Wang, Z. L., Petroski, J. M., Green, T. C. & El-Sayed, M. A. Shape transformation and surface melting of cubic and tetrahedral platinum nanocrystals. J. Phys. Chem. B 102, 6145–6151 (1998).

    Article  CAS  Google Scholar 

  26. Palazov, A. et al. Adsorption and hydrogenation of ethylene, 1-hexene, and benzene and CO adsorption on Pt/Al2O3 and Pt–Sn/Al2O3 catalysts. J. Catal. 103, 249–260 (1987).

    Article  CAS  Google Scholar 

  27. Collins, D. M. & Spicer, W. E. The adsorption of CO, O2, and H2 on Pt: I. Thermal desorption spectroscopy studies. Surf. Sci. 69, 85–113 (1977).

    Article  CAS  Google Scholar 

  28. Baraldi, A. et al. CO adsorption and CO oxidation on Rh(100). Appl. Surf. Sci. 99, 1–8 (1996).

    Article  CAS  Google Scholar 

  29. Ponec, V. & Bond, G. C. in Catalysis by Metals and Alloys (eds Delmon, B. & Yates, J. T.) (Elsevier Science, 1998).

    Google Scholar 

  30. Buffat, P. & Borel, J. P. Size effect on the melting temperature of gold particles. Phys. Rev. A 13, 2287–2298 (1976).

    Article  CAS  Google Scholar 

  31. Schicks, J., Neumann, D., Specht, U. & Veser, G. Nanoengineered catalysts for high-temperature methane partial oxidation. Catal. Today 81, 287–296 (2003).

    Article  CAS  Google Scholar 

  32. Gélin, P. & Primet, M. Complete oxidation of methane at low temperature over noble metal based catalysts: A review. Appl. Catal. B 39, 1–37 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Energy Technology Laboratory’s on-going research under the RDS contract DE-AC26-04NT41817, by the Department of Energy—Basic Energy Science through grant DE-FG02-05ER46233 and by the National Science Foundation through grant CTS-0553365. G.V. gratefully acknowledges a CNG faculty fellowship of the University of Pittsburgh’s Swanson School of Engineering. We thank Z. Liu for technical help with TEM characterizations and the Nanoscale Fabrication and Characterization Facility (NFCF) of the University of Pittsburgh for use of the electron microscopy facility.

Author information

Authors and Affiliations

Authors

Contributions

A.C. carried out all experimental work, including material synthesis, characterization and catalytic tests. G.V. designed and supervised the research programme. Both contributed to data analysis, discussion and writing of the manuscript.

Corresponding author

Correspondence to Götz Veser.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2449 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, A., Veser, G. Exceptional high-temperature stability through distillation-like self-stabilization in bimetallic nanoparticles. Nature Mater 9, 75–81 (2010). https://doi.org/10.1038/nmat2584

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2584

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing