Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reduction of the bulk modulus at high pressure in CrN

Abstract

Nitride coatings are increasingly demanded in the cutting- and machining-tool industry owing to their hardness, thermal stability and resistance to corrosion. These properties derive from strongly covalent bonds; understanding the bonding is a requirement for the design of superhard materials with improved capabilities. Here, we report a pressure-induced cubic-to-orthorhombic transition at ≈1 GPa in CrN. High-pressure X-ray diffraction and ab initio calculations show an unexpected reduction of the bulk modulus, K0, of about 25% in the high-pressure (lower volume) phase. Our combined theoretical and experimental approach shows that this effect is the result of a large exchange striction due to the approach of the localized Cr:t3 electrons to becoming molecular-orbital electrons in Cr–Cr bonds. The softening of CrN under pressure is a manifestation of a strong competition between different types of chemical bond that are found at a crossover from a localized to a molecular-orbital electronic transition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Summary of the X-ray results at different pressures and temperatures.
Figure 2: Volume–pressure data of CrN fitted to the Birch–Murnaghan equation of state, truncated at second order (K′=4).
Figure 3: Ab initio calculation of the charge-density difference between the high-pressure Pnma and low-pressure Fm3m phases of CrN.
Figure 4: Pressure dependence of the magnetic transition temperature, TN, of the Pnma phase.

Similar content being viewed by others

References

  1. Kaner, R. B., Giman, J. J. & Tolbert, S. H. Designing superhard materials. Science 308, 1268–1269 (2005).

    Article  CAS  Google Scholar 

  2. Tong, W. P., Tao, N. R., Wang, Z. B., Lu, J. & Lu, K. Nitriding iron at lower temperatures. Science 299, 686–688 (2003).

    Article  CAS  Google Scholar 

  3. Esaka, R. et al. Comparison of surface oxidation of titanium nitride and chromium nitride films studied by X-ray absorption and photoelectron spectroscopy. J. Vac. Sci. Technol. A 15, 2521–2528 (1997).

    Article  CAS  Google Scholar 

  4. Gregoryanz, E. et al. Synthesis and characterization of a binary noble metal nitride. Nature Mater. 3, 294–297 (2004).

    Article  CAS  Google Scholar 

  5. Grossman, J. C. et al. Transition metals and their carbides and nitrides: Trends in electronic and structural properties. Phys. Rev. B 60, 6343–6347 (1999).

    Article  CAS  Google Scholar 

  6. McMillan, P. F. New materials from high-pressure experiments. Nature Mater. 1, 19–25 (2002).

    Article  CAS  Google Scholar 

  7. Subramanya Herle, P., Hegde, M. S., Vasathacharya, N. Y. & Philip, S. Synthesis of TiN, VN and CrN from ammonolysis of TiS2,VS2, and Cr2S3 . J. Solid State Chem. 134, 120–127 (1997).

    Article  CAS  Google Scholar 

  8. Gall, D., Shin, C-S., Haasch, R. T., Petrov, I. & Greene, J.E. Band gap in epitaxial NaCl-structure CrN(001) layers. J. Appl. Phys. 91, 5882–5886 (2002).

    Article  CAS  Google Scholar 

  9. Corliss, L. M., Elliott, N. & Hastings, J. M. Antiferromagnetic structure of CrN. Phys. Rev. 117, 929–935 (1960).

    Article  CAS  Google Scholar 

  10. Browne, J. D., Liddell, P. R., Street, R. & Mills, T. An investigation of the antiferromagnetic transition of CrN. Phys. Status Solidi A 1, 715–723 (1970).

    Article  CAS  Google Scholar 

  11. Filippetti, A. & Hill, N. A. Magnetic stress as the driving force of structural distortions: the case of CrN. Phys. Rev. Lett. 85, 5166–5169 (2000).

    Article  CAS  Google Scholar 

  12. Angel, R. J. High-Temperature and High-Pressure Crystal Chemistry (Reviews in Mineralogy and Geochemistry, 41, Mineralogical Society of America, 2000).

    Google Scholar 

  13. Chen, H. Y., Tsai, C. J. & Lu, F. H. The Young’s modulus of chromium nitride films. Surf. Coat. Technol. 184, 69–73 (2004).

    Article  CAS  Google Scholar 

  14. Aizawa, T., Kuwahara, H. & Tamura, M. Fabrication of CrN/Cr2N bulk composites and their mechanical properties. J. Am. Ceram. Soc. 85, 81–85 (2002).

    Article  CAS  Google Scholar 

  15. Crowhurst, J. C. et al. Synthesis and characterization of the nitrides of platinum and iridium. Science 311, 1275–1278 (2008).

    Article  Google Scholar 

  16. Shebanova, O., Soignard, E. & McMillan, P. F. Compressibilities and phonon spectra of high-hardness transition metal-nitride materials. High Press. Res. 26, 87–97 (2006).

    Article  CAS  Google Scholar 

  17. Cumberland, R. W. et al. Osmium diboride, an ultraincompressible, hard material. J. Am. Chem. Soc. 127, 7264–7265 (2005).

    Article  CAS  Google Scholar 

  18. Yu, R., Zhan, Q. & De Jonghe, L. C. Crystal structures of and displacive transitions in OsN2, IrN2, RuN2, and RhN2 . Angew. Chem. Int. Ed. Engl. 46, 1136–1140 (2007).

    Article  CAS  Google Scholar 

  19. Young, A. F. et al. Synthesis of novel transition metal nitrides IrN2 and OsN2 . Phys. Rev. Lett. 96, 155501–155504 (2006).

    Article  Google Scholar 

  20. Chhowalla, M. & Unalan, H. E. Thin films of hard cubic Zr3N4 stabilized by stress. Nature Mater. 4, 317–322 (2005).

    Article  CAS  Google Scholar 

  21. Meng, Y. et al. The formation of sp3 bonding in compressed BN. Nature Mater. 3, 111–114 (2004).

    Article  CAS  Google Scholar 

  22. Goodenough, J. B. Magnetism and the Chemical Bond (Wiley, 1963).

    Google Scholar 

  23. Goodenough, J. B. & Rivadulla, F. Bond-length fluctuations in transition-metal oxides. Mod. Phys. Lett. B 19, 1057–1081 (2005).

    Article  CAS  Google Scholar 

  24. Goodenough, J. B., Dutta, G. & Manthiram, A. Lattice instabilities near the critical V–V separation for localized versus itinerant electrons in LiV1−yMyO2 (M=Cr or Ti)Li1−xVO2 . Phys. Rev. B 43, 10170–10178 (1991).

    Article  CAS  Google Scholar 

  25. Radaelli, P. G. et al. Formation of isomorphic Ir3+ and Ir4+ octamers and spin dimerization in the spinel CuIr2S4 . Nature 416, 155–158 (2002).

    Article  CAS  Google Scholar 

  26. Schmidt, M. et al. Spin singlet formation in MgTi2O4: Evidence of a helical dimerization pattern. Phys. Rev. Lett. 92, 56402–56405 (2004).

    Article  CAS  Google Scholar 

  27. Anderson, P. W. New approach to the theory of superexchange interactions. Phys. Rev. 115, 2–13 (1959).

    Article  CAS  Google Scholar 

  28. Harrison, W. A. Electronic Structure and the Properties of Solids. The Physics of the Chemical Bond (W. H. Freeman, 1980).

    Google Scholar 

  29. Bloch, D. The 10/3 law for the volume dependence of suprexchange. J. Phys. Chem. Solids 27, 881–885 (1966).

    Article  CAS  Google Scholar 

  30. Zhou, J.-S. & Goodenough, J. B. Pressure-induced transition from localized electron toward band antiferromagnetism in LaMnO3 . Phys. Rev. Lett. 89, 87201–87204 (2002).

    Article  Google Scholar 

  31. Haines, J. & Leger, J. M. Phase transitions in ruthenium dioxide up to 40 GPa: Mechanism for the rutile-to-fluorite phase transformation and a model for the high-pressure behaviour of stishovite SiO2 . Phys. Rev. B 48, 13344–13350 (1993).

    Article  CAS  Google Scholar 

  32. Lennie, A. R., Laundy, D., Roberts, M. A. & Bushnell-Wye, G. A novel facility using a Laue focusing monochromator for high-pressure diffraction at the SRS, Daresbury, UK. J. Synchrotron. Radiat. 14, 433–438 (2007).

    Article  Google Scholar 

  33. Schwarz, K. & Blaha, P. Solid state calculations using WIEN2k. Comput. Mater. Sci. 28, 259–273 (2003).

    Article  CAS  Google Scholar 

  34. Sjöstedt, E., Nördstrom, L. & Singh, D. J. An alternative way of linearizing the augmented plane-wave method. Solid State Commun. 114, 15–20 (2000).

    Article  Google Scholar 

  35. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  36. Lichtenstein, A. I., Asinimov, V. I. & Zaanen, J. Density-functional theory and strong interactions: Orbital ordering in Mott–Hubbard insulators. Phys. Rev. B 52, R5467–R5470 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

B. Dacuña from the X-ray service of USC (Spain) is acknowledged for his help during the thermal X-ray experiments, as are A. Lennie, S. Blanco-Canosa and M. Otero-Leal for their collaboration in the high-pressure X-ray experiments at Daresbury SRS. C. Serra from the University of Vigo, Spain, is acknowledged for the X-ray photoemission spectroscopy analysis. We acknowledge financial support from Xunta de Galicia (PXIB20919PR and O8PXIB236053PR) MEC of Spain (MAT2009-08165) and the Robert A. Welch Foundation of Houston, TX (Grant F-1066).

Author information

Authors and Affiliations

Authors

Contributions

F.R. conceived the project, synthesized the samples, carried out the synchrotron and magnetic experiments, analysed the results and wrote the paper. M.B.-L. carried out and analysed the synchrotron X-ray data and participated in the discussion. C.X.Q. made electrical and thermal conductivity measurements, and collaborated in the synthesis. A.P., V.P. and D.B. carried out the ab inito calculations and participated in the discussions. M.A.L.-Q. and J.R. participated in the discussion. C.A.R. and H.S. measured the thermal expansion and Young modulus. J.-S.Z. carried out high-pressure X-ray experiments. J.B.G. participated in the discussion and wrote the paper.

Corresponding author

Correspondence to Francisco Rivadulla.

Supplementary information

Supplementary Information

Supplementary Information (PDF 433 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivadulla, F., Bañobre-López, M., Quintela, C. et al. Reduction of the bulk modulus at high pressure in CrN. Nature Mater 8, 947–951 (2009). https://doi.org/10.1038/nmat2549

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2549

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing