Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

On the origin of the open-circuit voltage of polymer–fullerene solar cells

Abstract

The increasing amount of research on solution-processable, organic donor–acceptor bulk heterojunction photovoltaic systems, based on blends of conjugated polymers and fullerenes has resulted in devices with an overall power-conversion efficiency of 6%. For the best devices, absorbed photon-to-electron quantum efficiencies approaching 100% have been shown. Besides the produced current, the overall efficiency depends critically on the generated photovoltage. Therefore, understanding and optimization of the open-circuit voltage (Voc) of organic solar cells is of high importance. Here, we demonstrate that charge-transfer absorption and emission are shown to be related to each other and Voc in accordance with the assumptions of the detailed balance and quasi-equilibrium theory. We underline the importance of the weak ground-state interaction between the polymer and the fullerene and we confirm that Voc is determined by the formation of these states. Our work further suggests alternative pathways to improve Voc of donor–acceptor devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The chemical structures of the donor polymers used.
Figure 2: The E Q EPV spectra of polymer–fullerene devices.
Figure 3: Electroluminescence emission and corresponding injected current versus voltage curves of polymer–fullerene devices.
Figure 4: Comparison of the measured E Q EEL with the product of the E Q EPV spectrum with the black-body spectrum at room temperature.
Figure 5: The Voc obtained by means of the detailed balance approach versus the measured Voc.

Similar content being viewed by others

References

  1. Thompson, B. C. & Fréchet, J. M. J. Polymer-fullerene composite solar cells. Angew. Chem. Int. Ed. 47, 58–77 (2008).

    Article  CAS  Google Scholar 

  2. Park, S. H. et al. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nature Photon. 3, 297–302 (2009).

    Article  CAS  Google Scholar 

  3. Dennler, G., Scharber, M. C. & Brabec, C. J. Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 13, 1323–1338 (2009).

    Article  Google Scholar 

  4. Scharber, M. C. et al. Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Adv. Mater. 18, 789–794 (2006).

    Article  CAS  Google Scholar 

  5. Veldman, D., Meskers, S. C. J. & Janssen, R. A. J. The energy of charge-transfer states in electron donor–acceptor blends: Insight into the energy losses in organic solar cells. Adv. Funct. Mater. 19, 1939–1948 (2009).

    Article  CAS  Google Scholar 

  6. Shockley, W. & Queisser, H. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    Article  CAS  Google Scholar 

  7. Gadisa, A., Svensson, M., Andersson, M. R. & Inganäs, O. Correlation between oxidation potential and open-circuit voltage of composite solar cells based on blends of polythiophenes/fullerene derivative. Appl. Phys. Lett. 84, 1609–1611 (2004).

    Article  CAS  Google Scholar 

  8. Nelson, J., Kirkpatrick, J. & Ravirajan, P. Factors limiting the efficiency of molecular photovoltaic devices. Phys. Rev. B 69, 035337 (2004).

    Article  Google Scholar 

  9. Rand, B. P., Burk, D. P. & Forrest, S. R. Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells. Phys. Rev. B 75, 115327 (2007).

    Article  Google Scholar 

  10. Potscavage, W. J., Yoo, S. & Kippelen, B. Origin of the open-circuit voltage in multilayer heterojunction organic solar cells. Appl. Phys. Lett. 93, 193308 (2008).

    Article  Google Scholar 

  11. Kirchartz, T., Mattheis, J. & Rau, U. Detailed balance theory of excitonic and bulk heterojunction solar cells. Phys. Rev. B 78, 235320 (2008).

    Article  Google Scholar 

  12. Benson-Smith, J. J. et al. Formation of a ground-state charge-transfer complex in polyfluorene/[6,6]-phenyl-C-61 butyric acid methyl ester (PCBM) blend films and its role in the function of polymer/PCBM solar cells. Adv. Funct. Mater. 17, 451–457 (2007).

    Article  CAS  Google Scholar 

  13. Loi, M. A. et al. Charge transfer excitons in bulk heterojunctions of a polyfluorene copolymer and a fullerene derivative. Adv. Funct. Mater. 17, 2111–2116 (2007).

    Article  CAS  Google Scholar 

  14. Hallermann, M., Haneder, S. & Da Como, E. Charge-transfer states in conjugated polymer/fullerene blends: Below-gap weakly bound excitons for polymer photovoltaics. Appl. Phys. Lett. 93, 053307 (2008).

    Article  Google Scholar 

  15. Veldman, D. et al. Compositional and electric field dependence of the dissociation of charge transfer excitons in alternating polyfluorene copolymer/fullerene blends. J. Am. Chem. Soc. 130, 7721–7735 (2008).

    Article  CAS  Google Scholar 

  16. Kim, H. et al. Electroluminescence in polymer-fullerene photovoltaic cells. Appl. Phys. Lett. 86, 183502 (2005).

    Article  Google Scholar 

  17. Tvingstedt, K. et al. Electroluminescence from charge transfer states in polymer solar cells. J. Am. Chem. Soc. 131, 11819–11824 (2009).

    Article  CAS  Google Scholar 

  18. Goris, L. et al. Absorption phenomena in organic thin films for solar cell applications investigated by photothermal deflection spectroscopy. J. Mater. Sci. 40, 1413–1418 (2005).

    Article  CAS  Google Scholar 

  19. Goris, L. et al. Observation of the subgap optical absorption in polymer-fullerene blend solar cells. Appl. Phys. Lett. 88, 052113 (2006).

    Article  Google Scholar 

  20. Vandewal, K. et al. The relation between open-circuit voltage and the onset of photocurrent generation by charge-transfer absorption in polymer: fullerene bulk heterojunction solar cells. Adv. Funct. Mater. 18, 2064–2070 (2008).

    Article  CAS  Google Scholar 

  21. Campoy-Quiles, M. et al. Morphology evolution via self-organization and lateral and vertical diffusion in polymer: fullerene solar cell blends. Nature Mater. 7, 158–164 (2008).

    Article  CAS  Google Scholar 

  22. Ma, W. L., Yang, C. Y., Gong, X., Lee, K. & Heeger, A. J. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv. Funct. Mater. 15, 1617–1622 (2005).

    Article  CAS  Google Scholar 

  23. Peet, J. et al. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nature Mater. 6, 497–500 (2007).

    Article  CAS  Google Scholar 

  24. Wienk, M. M. et al. Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. Angew. Chem. Int. Ed. 42, 3371–3375 (2003).

    Article  CAS  Google Scholar 

  25. Vanecek, M. & Poruba, A. Fourier-transform photocurrent spectroscopy of microcrystalline silicon for solar cells. Appl. Phys. Lett. 80, 719–721 (2002).

    Article  CAS  Google Scholar 

  26. Würfel, P. The chemical potential of radiation. J. Phys. C 15, 3967–3985 (1982).

    Article  Google Scholar 

  27. Schick, K., Daub, E., Finkbeiner, S. & Würfel, P. Verification of a generalized Planck law for luminescence radiation from silicon solar cells. Appl. Phys. A 54, 109–114 (1992).

    Article  Google Scholar 

  28. Trupke, T., Würfel, P., Uhlendorf, I. & Lauermann, I. Electroluminescence of the dye-sensitized solar cell. J. Phys. Chem. B 103, 1905–1910 (1999).

    Article  CAS  Google Scholar 

  29. Band, Y. B. & Heller, D. F. Relationships between absorption and emission of light in multilevel systems. Phys. Rev. A 38, 1885–1895 (1988).

    Article  CAS  Google Scholar 

  30. Ross, R. T. & Calvin, M. Thermodynamics of light emission and free-energy storage in photosynthesis. Biophys. J. 7, 595–614 (1967).

    Article  CAS  Google Scholar 

  31. Green, M. A. Third Generation Photovoltaics: Advanced Solar Energy Conversion (Springer, 2006).

    Google Scholar 

  32. Rau, U. Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells. Phys. Rev. B 76, 085303 (2007).

    Article  Google Scholar 

  33. Kirchartz, T. & Rau, U. Detailed balance and reciprocity in solar cells. Phys. Status Solidi A 205, 2737–2751 (2008).

    Article  CAS  Google Scholar 

  34. Bruan, D. Electron injection and conduction processes for polymer devices. J. Polym. Sci. Part B: Polym. Phys. 41, 2622–2629 (2003).

    Article  Google Scholar 

  35. Waldauf, C., Scharber, M. C., Schilinsky, P., Hauch, J. A. & Brabec, C. J. Physics of organic bulk heterojunction devices for photovoltaic applications. J. Appl. Phys. 99, 104503 (2006).

    Article  Google Scholar 

  36. Panda, P. et al. Charge transfer absorption for pi-conjugated polymers and oligomers mixed with electron acceptors. J. Phys. Chem. B 111, 5076–5081 (2007).

    Article  CAS  Google Scholar 

  37. Foster, R. Organic Charge-Transfer Complexes (Academic, 1969).

    Google Scholar 

  38. Pope, M. & Swenberg, C. E. Electronic Processes in Organic Crystals and Polymers (Oxford Univ. Press, 1999).

    Google Scholar 

  39. Ross, R. B. et al. Endohedral fullerenes for organic photovoltaic devices. Nature Mater. 8, 208–212 (2009).

    Article  CAS  Google Scholar 

  40. Lenes, M. et al. Fullerene bisadducts for enhanced open-circuit voltages and efficiencies in polymer solar cells. Adv. Mater 20, 2116–2119 (2008).

    Article  CAS  Google Scholar 

  41. Zhang, F. et al. High photovoltage achieved in low band gap polymer solar cells by adjusting energy levels of a polymer with the LUMOs of fullerene derivatives. J. Mater. Chem. 18, 5468–5474 (2008).

    Article  CAS  Google Scholar 

  42. Perez, M. D., Borek, C., Forrest, S. R. & Thompson, M. E. Molecular and morphological influences on the open circuit voltages of organic photovoltaic devices. J. Am. Chem. Soc. 131, 9281 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

K.V., A.G. and J.V.M. acknowledge the institute for the promotion of science and technology in Flanders (IWT-Vlaanderen) the IWT-project polyspec, the FWO project nano-fibres and the European project solar-n-type. K.T. and O.I. thank the Swedish Energy Agency for funding through the programme Tandem. All authors acknowledge M.R. Andersson at Chalmers University for supplying APFO3 and LBPP5 and Markus Scharber for supplying PCPDTBT. D. Vanderzande, W. D. Oosterbaan, P. Adriaensens and S. Chambon are thanked for valuable discussions.

Author information

Authors and Affiliations

Authors

Contributions

K.V. and A.G. prepared the devices and carried out FTPS measurements in Hasselt. K.T. and K.V. prepared devices and carried out the electroluminescence measurements in Linköping. K.V. wrote the paper. All authors provided comments on the manuscript. J.V.M. and O.I. directed the research.

Corresponding author

Correspondence to Koen Vandewal.

Supplementary information

Supplementary Information

Supplementary Information (PDF 745 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vandewal, K., Tvingstedt, K., Gadisa, A. et al. On the origin of the open-circuit voltage of polymer–fullerene solar cells. Nature Mater 8, 904–909 (2009). https://doi.org/10.1038/nmat2548

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2548

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing