Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Atomic-scale imaging of individual dopant atoms in a buried interface

Abstract

Determining the atomic structure of internal interfaces in materials and devices is critical to understanding their functional properties. Interfacial doping is one promising technique for controlling interfacial properties at the atomic scale1,2,3,4,5, but it is still a major challenge to directly characterize individual dopant atoms within buried crystalline interfaces. Here, we demonstrate atomic-scale plan-view observation of a buried crystalline interface (an yttrium-doped alumina high-angle grain boundary) using aberration-corrected Z-contrast scanning transmission electron microscopy. The focused electron beam transmitted through the off-axis crystals clearly highlights the individual yttrium atoms located on the monoatomic layer interface plane. Not only is their unique two-dimensional ordered positioning directly revealed with atomic precision, but local disordering at the single-atom level, which has never been detected by the conventional approaches, is also uncovered. The ability to directly probe individual atoms within buried interface structures adds new dimensions to the atomic-scale characterization of internal interfaces and other defect structures in many advanced materials and devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration and two cross-sectional Z-contrast STEM images of the Y-doped Σ 13 grain boundary of α-Al2O3.
Figure 2: Plan-view images of the Y-doped Σ 13 grain boundary.
Figure 3: Z-contrast STEM image simulation of the plan-view Y-doped Σ 13 grain boundary.
Figure 4: Filtered plan-view Z-contrast STEM image highlighting the two-dimensional positioning of the interface Y atoms.

Similar content being viewed by others

References

  1. Hammerl, G. et al. Enhanced supercurrent density in polycrystalline YBa2Cu3O7−δ at 77 K from calcium doping of grain boundaries. Nature 407, 162–164 (2000).

    Article  CAS  Google Scholar 

  2. Sorba, L. et al. Tuning AlAs-GaAs band discontinuities and the role of Si-induced local interface dipoles. Phys. Rev. B. 43, 2450–2453 (1991).

    Article  CAS  Google Scholar 

  3. Shibata, N. et al. Observation of rare-earth segregation in silicon nitride ceramics at subnanometre dimensions. Nature 428, 730–733 (2004).

    Article  CAS  Google Scholar 

  4. Buban, J. P. et al. Grain boundary strengthening in alumina by rare earth impurities. Science 311, 212–215 (2006).

    Article  CAS  Google Scholar 

  5. Sato, Y. et al. Role of Pr segregation in acceptor-state formation at ZnO grain boundaries. Phys. Rev. Lett. 97, 106802 (2006).

    Article  Google Scholar 

  6. Luzzi, D. E., Yan, M., Šob, M. & Vitek, V. Atomic structure of a grain boundary in a metallic alloy: Combined electron microscope and theoretical study. Phys. Rev. Lett. 67, 1894–1897 (1991).

    Article  CAS  Google Scholar 

  7. Muller, D. A. & Mills, M. J. Electron microscopy: Probing the atomic structure and chemistry of grain boundaries, interfaces and defects. Mater. Sci. Eng. A 260, 12–28 (1999).

    Article  Google Scholar 

  8. Williams, D. B. & Carter, C. B. Transmission Electron Microscopy: A Text Book for Materials Science. Imaging III (Plenum, 1996).

    Book  Google Scholar 

  9. Pennycook, S. J. & Jesson, D. E. High-resolution Z-contrast imaging of crystals. Ultramicroscopy 37, 14–38 (1991).

    Article  Google Scholar 

  10. Voyles, P. M. et al. Atomic-scale imaging of individual dopant atoms and clusters in highly n-type bulk Si. Nature 416, 826–829 (2002).

    Article  CAS  Google Scholar 

  11. Chisholm, M. F., Maiti, A., Pennycook, S. J. & Pantelides, S. T. Atomic configurations and energetics of arsenic impurities in a silicon grain boundary. Phys. Rev. Lett. 81, 132–135 (1998).

    Article  CAS  Google Scholar 

  12. Yan, Y. et al. Impurity-induced structural transformation of a MgO grain boundary. Phys. Rev. Lett. 81, 3675–3678 (1998).

    Article  CAS  Google Scholar 

  13. Winkelman, G. B. et al. Three-dimensional organization of rare-earth atoms at grain boundaries in silicon nitride. Appl. Phys. Lett. 87, 061911 (2005).

    Article  Google Scholar 

  14. Xin, H. L., Intaraprasonk, V. & Muller, D. A. Depth sectioning of individual dopant atoms with aberration-corrected scanning transmission electron microscopy. Appl. Phys. Lett. 92, 013125 (2008).

    Article  Google Scholar 

  15. van Benthem, K. et al. Three-dimensional imaging of individual hafnium atoms inside a semiconductor device. Appl. Phys. Lett. 87, 034104 (2005).

    Article  Google Scholar 

  16. Matsunaga, K. et al. Direct measurements of grain boundary sliding in yttrium-doped alumina bicrystals. Appl. Phys. Lett. 82, 1179–1181 (2003).

    Article  CAS  Google Scholar 

  17. Fabris, S. & Elsässer, C. Σ 13 (101̄4) twin in α-Al2O3: A model for a general grain boundary. Phys. Rev. B 64, 245117 (2001).

    Article  Google Scholar 

  18. Sutton, A. P. & Balluffi, R. W. Interfaces in Crystalline Materials (Oxford Univ. Press, 1995).

    Google Scholar 

  19. Allen, L. J., Findlay, S. D., Oxley, M. P. & Rossouw, C. J. Ultramicroscopy 96, 47–63 (2003).

    Article  CAS  Google Scholar 

  20. Nakamura, K. et al. First-principles study of grain boundary sliding in α-Al2O3 . Phys. Rev. B 75, 184109 (2007).

    Article  Google Scholar 

  21. Höche, T. et al. The structure of special grain boundaries in α-Al2O3 . J. Phys. Chem. Solids 55, 1067–1082 (1994).

    Article  Google Scholar 

  22. Borisevich, A. Y., Lupini, A. R. & Pennycook, S. J. Depth sectioning with the aberration-corrected scanning transmission electron microscope. Proc. Natl Acad. Sci. USA 103, 3044–3048 (2006).

    Article  CAS  Google Scholar 

  23. Haider, M. et al. Prerequisites for a Cc/Cs-corrected ultrahigh-resolution TEM. Ultramicroscopy 108, 167–178 (2008).

    Article  CAS  Google Scholar 

  24. Krivanek, O. L. et al. An electron microscope for the aberration-corrected era. Ultramicroscopy 108, 179–195 (2008).

    Article  CAS  Google Scholar 

  25. Kirfel, A. & Eichhorn, K. Accurate structure analysis with synchrotron radiation. The electron density in Al2O3 and Cu2O. Acta Crystallogr. A 46, 271–284 (1990).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Grant-in-Aid for Scientific Research on Priority Areas ‘Nano Materials Science for Atomic-scale Modification 474’ from the Ministry of Education, Culture, Sports and Technology Japan (MEXT). N.S. acknowledges support from PRESTO, Japan Science and Technology Agency, and the Industrial Technology Research Grant Program in 2007 from the New Energy and Industrial Technology Development Organization (NEDO), and the Grant-in-Aid for Young Scientists (A) (20686042) from MEXT. S.D.F. is supported as a Japan Society for the Promotion of Science (JSPS) fellow.

Author information

Authors and Affiliations

Authors

Contributions

N.S. designed and carried out the STEM experiments and wrote the paper. S.D.F. carried out image simulations, image processing and wrote the paper. S.A. fabricated the bicrystal. S.A., T.M. and T.Y. supported the experiments and carried out density functional theory calculations. Y.I. directed the entire study.

Corresponding author

Correspondence to N. Shibata.

Supplementary information

Supplementary Information

Supplementary Information (PDF 435 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shibata, N., Findlay, S., Azuma, S. et al. Atomic-scale imaging of individual dopant atoms in a buried interface. Nature Mater 8, 654–658 (2009). https://doi.org/10.1038/nmat2486

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2486

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing